Counting Based Sorting
Beating the Worst Case

S.V.N. (vishy) Vishwanathan

University of California, Santa Cruz
vishy@ucsc.edu

February 17, 2016
Outline

1 Counting Sort

2 Radix Sort

3 Bucket Sort
Assumptions about the Input

1. Each of the n input elements is an integer in the range 0 to k
2. Moreover, $k = O(n)$
Counting Sort

Partition

Crucial property: Stability (order preserving)
Pseudocode

COUNTING-SORT(A, B, k)

1. let $C[0..k]$ be a new array
2. for $i = 0$ to k
 3. $C[i] = 0$
4. for $j = 1$ to $A.length$
 6. // $C[i]$ now contains the number of elements equal to i
7. for $i = 1$ to k
 8. $C[i] = C[i] + C[i - 1]$
 9. // $C[i]$ now contains the number of elements less than or equal to i
10. for $j = A.length$ downto 1
Time Complexity

- The `for` loop in lines 2–3 takes $\Theta(k)$ time
- The `for` loop in lines 4–5 takes $\Theta(n)$ time
- The `for` loop in lines 7–8 takes $\Theta(k)$ time
- The `for` loop in lines 10–12 takes $\Theta(n)$ time

Since $k = O(n)$, the overall time complexity is $\Theta(n)$
Why is Counting Sort beating the worst case complexity of comparison based sorting?
Outline

1. Counting Sort
2. Radix Sort
3. Bucket Sort
Assumptions about the Input

- Each of the n input elements is an integer with at most d digits
Basic Idea

329 720 720 329
457 355 329 355
657 436 436 436
839 457 839 457
436 657 355 657
720 329 457 720
355 839 657 839
Radix Sort

Pseudocode

RADIX-SORT(A, d)
1 for i = 1 to d
2 use a stable sort to sort array A on digit i
Time Complexity

- Given n numbers with d digits each
- Each digit takes up to k possible values
- Stable sort for each digit takes $\Theta(n + k)$ time
- Then radix sort takes $\Theta(d(n + k))$ time

If d is a constant, and $k = O(n)$, then radix sort takes $O(n)$ time
Outline

1. Counting Sort
2. Radix Sort
3. Bucket Sort
Assumptions about the Input

- Each of the n input elements is drawn from a uniform distribution over the interval $[0, 1)$
Bucket Sort

Basic Idea

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.78</td>
</tr>
<tr>
<td>2</td>
<td>.17</td>
</tr>
<tr>
<td>3</td>
<td>.39</td>
</tr>
<tr>
<td>4</td>
<td>.26</td>
</tr>
<tr>
<td>5</td>
<td>.72</td>
</tr>
<tr>
<td>6</td>
<td>.94</td>
</tr>
<tr>
<td>7</td>
<td>.21</td>
</tr>
<tr>
<td>8</td>
<td>.12</td>
</tr>
<tr>
<td>9</td>
<td>.23</td>
</tr>
<tr>
<td>10</td>
<td>.68</td>
</tr>
</tbody>
</table>

0	.12
1	.21
2	.39
3	.68
4	.72
5	.94
6	.78
7	.17
8	.26
9	.45
Pseudocode

BUCKET-SORT(A)

1. let $B[0\ldots n-1]$ be a new array
2. $n = A.length$
3. for $i = 0$ to $n-1$
 4. make $B[i]$ an empty list
5. for $i = 1$ to n
 6. insert $A[i]$ into list $B[\lfloor nA[i]\rfloor]$
7. for $i = 0$ to $n-1$
8. sort list $B[i]$ with insertion sort
9. concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order
Bucket Sort

Analysis

- Let n_i be number of elements in bucket $B[i]$.
- Time complexity is

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

- Average case

$$\mathbb{E}[T(n)] = \mathbb{E}\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O(\mathbb{E}[n_i^2])$$

- Claim: $\mathbb{E}[n_i^2] = 2 - 1/n$ for each $i = 0, 1, \ldots, n - 1$
- Therefore $\mathbb{E}[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} 2 - 1/n = \Theta(n)$
Proof of Claim - I

- Define

\[X_{ij} = I \{ A[j] \text{ falls in bucket } i \} \]

- Therefore

\[n_i = \sum_{j=1}^{n} X_{ij} \]

and

\[n_i^2 = \left(\sum_{j=1}^{n} X_{ij} \right)^2 = \sum_{j=1}^{n} X_{ij}^2 + \sum_{j=1}^{n} \sum_{k=1, k \neq j}^{n} X_{ij} X_{ik} \]

- Taking expectations

\[\mathbb{E} \left[n_i^2 \right] = \sum_{j=1}^{n} \mathbb{E} \left[X_{ij}^2 \right] + \sum_{j=1}^{n} \sum_{k=1, k \neq j}^{n} \mathbb{E} \left[X_{ij} \right] \mathbb{E} \left[X_{ik} \right] \]
Proof of Claim - II

\(X_{ij} = 1 \) with probability \(\frac{1}{n} \) and 0 with probability \((1 - \frac{1}{n}) \)

\[
\mathbb{E}[X_{ij}] = 1 \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}
\]

and

\[
\mathbb{E}[X_{ij}^2] = 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}
\]

Therefore

\[
\mathbb{E}\left[n_i^2 \right] = \sum_{j=1}^{n} \mathbb{E}[X_{ij}^2] + \sum_{j=1}^{n} \sum_{k=1, k \neq j}^{n} \mathbb{E}[X_{ij}] \mathbb{E}[X_{ik}]
\]

\[
= \sum_{j=1}^{n} \frac{1}{n} + \sum_{j=1}^{n} \sum_{k=1, k \neq j}^{n} \frac{1}{n^2}
\]

\[
= 1 + n \cdot (n - 1) \cdot \frac{1}{n^2} = 2 - \frac{1}{n}.
\]
Why is Radix Sort beating the worst case complexity of comparison based sorting?
Questions?