Binary Search Tree
Sorting and Searching in a Dynamic Set

S.V.N. (vishy) Vishwanathan

University of California, Santa Cruz
vishy@ucsc.edu

February 29, 2016
Outline

1. Binary Search Trees
What is a Binary Search Tree?

- Binary tree (each node has 0, 1, or 2 children)
- Each node contains
 - key
 - satellite data
 - left
 - right
 - parent
- The keys satisfy the binary search tree property

Let \(x \) be a node in a binary search tree. If \(y \) is a node in the left subtree of \(x \), then \(y.key \leq x.key \). If \(y \) is a node in the right subtree of \(x \), then \(y.key \geq x.key \).
Inorder Tree Walk

INORDER-TREE-WALK(x)

1 if x ≠ NIL
2 INORDER-TREE-WALK(x.left)
3 print x.key
4 INORDER-TREE-WALK(x.right)
TREE-SEARCH(x, k)

1 if x == NIL or k == x.key
2 return x
3 if k < x.key
4 return TREE-SEARCH(x.left, k)
5 else return TREE-SEARCH(x.right, k)
Iterative Search

ITERATIVE-TREE-SEARCH(x, k)
1 while x ≠ NIL and k ≠ x.key
2 if k < x.key
3 x = x.left
4 else x = x.right
5 return x
Search

```
       15
      /   \\
     6     18
    /     /  \
   3     17   20
 /    / \
2    7   13
   /    \
  4     9
```

Minimum

TREE-MINIMUM(x)

1 while x.left ≠ NIL
2 x = x.left
3 return x
Maximum

TREE-MAXIMUM(x)

1 while x.right ̸= NIL
2 x = x.right
3 return x
Minimum and Maximum

[Diagram of a binary search tree]

15
18
6
17
3
7
20
2
4
13
9
3
2
4
13
9
Successor

- Given a node x, its successor is the node with the smallest key greater than $x.key$
- It is the next node which occurs after x in the sorted order determined by an inorder tree walk
Successor

Look at node 15 and 13
Successor

TREE-SUCCESSOR(x)

1. if x.right ≠ NIL
2. return TREE-MINIMUM(x.right)
3. y = x.parent
4. while y ≠ NIL and x == y.right
5. x = y
6. y = y.parent
7. return y
Time Complexity

Theorem

We can implement the dynamic-set operations \textsc{search}, \textsc{minimum}, \textsc{maximum}, \textsc{successor}, and \textsc{predecessor} so that each one runs in \(O(h)\) time on a binary search tree of height \(h\)
Insertion

TREE-INSERT\((T, z)\)

1. \(y = \text{NIL} \)
2. \(x = T.\text{root} \)
3. while \(x \neq \text{NIL} \)
 4. \(y = x \)
 5. if \(z.\text{key} < x.\text{key} \)
 6. \(x = x.\text{left} \)
 7. else \(x = x.\text{right} \)
8. \(z.\text{parent} = y \)
9. if \(y == \text{NIL} \)
10. \(T.\text{root} = z \) // tree \(T \) was empty
11. elseif \(z.\text{key} < y.\text{key} \)
12. \(y.\text{left} = z \)
13. else \(y.\text{right} = z \)
Insertion

Look at node 13
Deletion: Three Cases

- **z** has no children. Delete z and modify its parent
- **z** has one child. Elevate child to take z’s position
- **z** has two children.
 - Find z’s successor **y**. We know that
 - **y** has no left child. Why?
 - **y** must lie in the right subtree of **z**
 - Replace z with **y**
 - However have to be careful if **y** is the right child of **z**
Deletion

(a)

(b)

(c)

(d)
Deletion: Split to Four Cases

- z has no left child. Replace z by its right child (which may be a NIL
- z has a left child. Replace z by its left child.
- z has both left and right children.
 - Find z’s successor y
 - y must lie in the right subtree of z and has no left child
 - If y is z’s right child, then replace z by y
 - Otherwise, replace y by its right child, and replace z by y
Pseudo-code

TREE-DELETE(T, z)

1. if $z.left == NIL$
2. then TRANSPLANT($T, z, z.right$)
3. elseif $z.right == NIL$
4. then TRANSPLANT($T, z, z.left$)
5. else $y = TREE-MINIMUM(z.right)$
6. if $y.parent \neq z$
7. then TRANSPLANT($T, y, y.right$)
8. $y.right = z.right$
9. $y.right.parent = y$
10. TRANSPLANT(T, z, y)
11. $y.left = z.left$
12. $y.left.parent = y$
Pseudo-code

TRANSPLANT(T, u, v)

1. if u.parent == NIL
2. T.root = v
3. elseif $u == u$.parent.left
4. u.parent.left = v
5. else u.parent.right = v
6. if $v \neq$ NIL
7. v.parent = u.parent
Questions?