
Mining Association Rules From MusicBrainz

Ivo Jimenez Vassilis Polychronopoulos

June 12, 2012

Abstract

MusicBrainz is a publicly available relational database that stores information about artists,
releases, tracks and the relationship among them. We present the results of mining association
rules from this dataset, with the aim of obtaining knowledge about artists and their work. We are
able to obtain associations between features, such as native language, and quantify how likely it
is for an artist to do the “cross-over” to another language; or to associate the volume of work an
artist produces with respect to a specific music label or genre. The number of possible association
rules is virtually infinite so we limit the scope of this work to a few meaningful ones. Nonetheless,
there is plenty of room for future work on this.

Introduction

MusicBrainz is a publicly available relational database that stores information about artists, releases, tracks
and the relationship among them. MusicBrainz is used by portable MP3 players and desktop multi-media
software to show metadata of a particular song to the user, while it is being played. Thus, the typical use for
the MusicBrainz dataset is operational, i.e. simple OLTP queries over it used to display an artist’s info (eg.
as in Rhythmbox); or to incorporate new information into the dataset (eg. Picard, the official MusicBrainz
client).

To the best of our knowledge, there hasn’t been any work on mining the MusicBrainz dataset. In this report,
we present the results of mining association rules from this dataset, with the aim of obtaining knowledge
about artists and their work. For example, we are able to obtain correlations between features, such as
the native language of an artist, and how likely it is for her to do the “cross-over” to other language (eg.
English). Another example is to associate the volume of work an artist produces with respect to a specific
music label or genre. The number of possible association rules is virtually infinite so we limit the scope of
this work to a few meaningful ones. Nonetheless, we include a list of associations that might be interesting
to mine.

The report is organized as follows. We give a high level introduction of Association Rule mining. We
then present the schematic structure of the MusicBrainz database in section. We then explain the query
and transformation of the data necessary to perform mining using R, and finally we explain the motivation
behind our experiments and present our results. The appendices contain detailed plots and lists of the results
which are mentioned high-level and commented in the main body of the report.

1

Frequent Patterns and Association Rules

Identifying the frequent itemsets from a dataset and deriving association rules is a very useful method for
knowledge discovery in a dataset that can be used in different domains. Association rules can reveal implicit
connections between items of a dataset and can help identify useful patterns for behavior prediction and
decision making. Strong association rules are the ones with high confidence and positive correlation. Various
measures of interest that can be used to analyze and present strong rules have been described by Shapiro and
Fawley [10]. To quote Agrawal et al. [1] the problem of mining association rules from a dataset is defined as
follows:

Let I = i1, i2, . . . , in be a set of n binary attributes called items. Let D = t1, t2, . . . , tm be a
set of transactions called the database. Each transaction in D has a unique transaction ID and
contains a subset of the items in I. A rule is defined as an implication of the form X → Y where
X,Y ⊆ I and X ∩ Y = ∅.

The standard nomenclature for the set of items X is the antecedent items or left-hand-side or LHS and for
the Y itemset is consequent or right-hand-side or RHS of the rule.

In lectures and literature there is a standard example that is used to clarify the concepts, using the trans-
actions made in a supermarket. Having a database that contains transactions, where each transaction is
a tuple that contains the items bought, examples of transactions are (1,milk, bread), (2, bread, butter),
(3,milk, bread, butter), (4, bread). An example of an association rule is {milk, butter} → {bread} which
would indicate that with a high confidence a customer that buys milk and butter is also buying bread. A
reference containing examples and conceptual information is [7].

To restrict our set of rules to a small one that contains meaningful and strong associations we use various
measures of interest and significance. The most widely used ones are the minimum threshold on support and
confidence. The support of an itemset, denoted supp(X) is the proportion of the transactions in the entire
dataset that contain all elements of the itemset. For example, itemset X = {item1, item2} has support
2/5 = 0.6 if it occurs in 60% of all transactions (3 out of 5 transactions).

Another interesting measure of correlation is the lift, defined as supp(X∪Y)
supp(X)supp(Y) essentially saying how many

times more itemsets X and Y are found together than in the case where they were statistically independent.
A lift that is smaller than 1 indicates a negative correlation, while the higher the lift of an association rule
X → Y the stronger the association is.

The problem that needs to be solved in order to derive association rules is determining frequent datasets.
In a database with a large number of transactions and items, performing a brute-search approach to de-
termine the frequent itemsets would explode exponentially and is prohibitively costly. There have been
significant contributions in the field in the past two decades. A benchmark that compares the currently
fastest algorithms for computing the frequent itemsets was made by Goethals and Zaki [5] . Two of the
algorithms tested are the Apriori and Eclat algorithms by Borgelt [3]. Apriori algorithm [2] uses a bread-first
approach that counts transactions increasing the itemset length and pruning the search tree to decrease the
size of the search space. Eclat [11] uses a different strategy involving equivalence classes and set intersection
rather than counting. The algorithms can be used to mine frequent itemsets, maximal frequent itemsets and
closed frequent itemsets. Apriori can also be used to generate the association rules. FP-growth algorithm
[8] is capable of computing the frequent itemsets without generating the candidate sets avoiding that costly
procedure.

In this work, we use the Apriori algorithm implemented in R [4] by the arules package [6].

2

MusicBrainz

The database

Musicbrainz is a project that aims to create an open content database containing music metadata. It is
called a project rather than a database, because it is constantly updated and enriched with new features and
additions to the schema. Also, the documentation for the database and the platform on which it runs is still
incomplete. Belonging to the public domain, it is available to anyone for download. For our experiments,
we downloaded a virtual machine containing an already configured PostgreSQL server with the database,
performing queries by remotely connecting to the virtual machine. Some technical issues arose on configuring
the connection with the virtual machine and other configuration settings of the virtual machine platform,
but, overall, the setting up of the database did not pose significant technical challenges.

Schema general description

In this section we give a quick description of the schematic organization of the MusicBrainz database. The
database is laid out in a star-schema fashion. Figure 1 corresponds to the UML-based diagram of the schema.
There are 10 fact tables corresponding to the main entities of the database. Refer to [9] for more information.

Artist

An artist is generally a musician, group of musicians, a collaboration of multiple musicians or other music
professional.

Artist credit

List of artists, variations of artist names and pieces of text to join the artist names. Examples:

• “Queen & David Bowie” – two artists (“Queen” and “David Bowie”), no name variations, joined with
” & ”.

• “Jean-Michel Jarre” – one artist (“Jean Michel Jarre”), name variation “Jean-Michel Jarre”

• “Tracy W. Bush Derek Duke Jason Hayes and Glenn Stafford” – four artists, no name variations,
joined with commas and an “and”.

Release group

Represents an abstract “album” entity. Technically it’s a group of releases, with a specified type. Examples:

• Single “Under Pressure” by “Queen & David Bowie”

• Album “The Wall” by “Pink Floyd”

3

Figure 1: Relational schema of the MusicBrainz database

4

Release

Real-world release object you can buy in your music store. It has release date and country, list of catalog
number and label pairs, packaging type and release status. Examples:

• 1984 US release of “The Wall” by “Pink Floyd”, release on label “Columbia Records” with catalog
number “C2K 36183” and UPC “074643618328”, it’s an official release and comes with two CDs in
jewel case.

Medium

Piece of media, included in a release. Contains information about the format, position in the release and an
optional title. Has attached CD TOCs. Examples:

• CD1 of the 1984 US release of “The Wall” by “Pink Floyd”

• CD2 of the 2005 UK release of “Aerial” by “Kate Bush”, named “A Sky of Honey”

Tracklist

A tracklist is an ordered list of tracks that is linked to one or more mediums. Examples:

• Tracklist 703797 appears on release The Wall (medium 1/2)

• Tracklist 1085862 appears on releases Violet Cries (digital media) and Violet Cries (vinyl)

Track

This object is not visible to users on its own, only in the context of a tracklist. It contains a link to a
recording, title, artist credit and its position on its tracklist.

Recording

Represents unique audio data. Has title, artist credit, duration, list of PUIDs and ISRCs Examples (all are
different Recordings):

• Album version of the track “Into the Blue” by “Moby”

• Remix “Into the Blue (Buzz Boys Main Room Mayhem mix)” by “Moby”

• Remix “Into the Blue (Underground mix)” by “Moby”

Work

One layer above recordings (“song”, “composition”, etc.). While recording represents audio data, work
represents the composition behind the recording. Advanced Relationships should be used to link recording
and work.

• Song “Into the Blue” by “Moby” – all the recordings listed above will be linked to this object

5

Label

Labels represent mostly imprints.

Advanced relationships

For all the combination of major entities (artist, work, release etc.) there exist relations that attempt to
grasp advanced relationships among them. There is a naming convention for each one of them, so advanced
relation l artist release contains information about relationships between artists and recordings, l artist label
contains information about relationships between artists and labels and likewise for the other entities. Each
advanced relation contains attributes entity0 and entity1 containing the ids of the corresponding entities
and an attribute called link, which joined with relations Links and Links name can determine the kind of
connection that the two entities have. Thus, in the case of an artist and a label, the link may indicate a
recording contract or the fact that the artist is the founder of that label. For an artist and a release, the
link may indicate that the artist did vocals, or played an instrument or was involved in mixing. So there is
a number of possible relationship types among entities and the kind of link established between them is the
main information that each tuple of this special relation contains.

Data preparation

Transactions can be represented as sparse matrices. We need to extend the notion of transaction to cir-
cumstances that go beyond the common use of the term, that is, in supermarkets and shops. Assuming we
have a one-to-many mapping from an artist to the various roles he/she has played in her carreer (an artist
may have served as a singer, lyricist, composer, producer, guitarist in the same or in different periods of
his/her career) we can consider a transaction having the form (singer,lyricist, composer, producer, guitarist).
Likewise, the fact that an artist has made recording contracts with various labels in the music industry, say
EMI, Warner Bros and Sony can be thought of as a transaction (EMI,Warner Bros, Sony) in a transaction
table that would contain that information for all artists. Thus, our task is to thoroughly explore the schema
of the database, perform the right queries, and transform the query results into transaction tables suitable
for mining by the apriori algorithm. The format of a transaction table on which rule extraction algorithms
run is the following (see Table 1 or an alternative format in Table 2): it contains two columns, one identifying
a transaction and another one with the item set that corresponds to each transaction. In its initial form
the result of the query is likely to contain the same artist or other entity in the left column, similar to the
format of Table 2, so the corresponding transaction is a list of all the elements in the right column where the
same element is present in the left column. This kind of representation needs to first be transformed into a
sparse array and then to a structure of the form ”transaction” suitable for use by the methods in the arules
R package.

ID ITEM

1 {milk, bread}

2 {bread, butter}

3 {milk, bread, butter}

4 {bread}

Table 1: Traditional way of
representing a transaction ta-
ble

6

ID ITEM

1 {milk}

1 {bread}

2 {bread}

2 {butter}

3 {milk}

3 {bread}

3 {butter}

4 {bread}

Table 2: An
alternative way
of representing
a transaction
table

Given that the MusicBrainz schema is starred, we have to prepare the data so that can work on the right
format. For example, for a rule associating record companies, say {Columbia} → {Sony} (see next section
for the rationale behind this association and for other meaningful ones), we have to get a transaction table
whose schema is Transaction(Artist, Label), that is, the id of an artist represents the id of a transaction and
the id of the label corresponds to the item. The query we need to address to the musicbrainz database to
get that result back would need to join 4 relations as we can see from the schema details of the database.
The query is the following:
SELECT distinct entity0, ln.name
FROM l artist label as w,link as l, label as lb, label name as ln, link type as t
WHERE w.link=l.id and l.link type=t.id and
t.name=’recording contract’ and entity1=lb.id and lb.id=ln.id

It is essential to thoroughly understand the database schema and make the right queries to the database to
obtain the data that is suitable for association rule mining. Having transaction data in the form of Table 2,
we need to mofidy them appropriately so that they can be made suitable for use with the apriori function of
the arules package in R. An R script that would do this would need to first turn the table into a sparse array
and then transform it into the form that can be used as input to the apriori function. The following script
loads the required libraries, connects to the library, posts the query and gets back results and performs the
necessary transformation to the query results:

load libraries

> library(RJDBC)

load the JDBC driver

> drv <- JDBC("org.postgresql.Driver", "pg.jar")

create a connection

> conn <- dbConnect(drv, "jdbc:postgresql://localhost/musicbrainz_db")

get data from the database

7

> data <- dbGetQuery(

conn,

"SELECT distinct entity0, ln.name

FROM l_artist_label as w,link as l, label as lb, label_name as ln, link_type as t

WHERE w.link=l.id and l.link_type=t.id and

t.name=’recording contract’ and entity1=lb.id and lb.id=ln.id")

get items and IDs:

ID = artist

item = label

> id <- data[, 1]

> item <- data[, 2]

We use the RJDBC library [@urbanek rjdbc 2011] to manage all the connectivity to the underlying DBMS. The
script first loads the driver of the DBMS (PostgreSQL [@postgresql global development group postgresql 2010]),
creates a connection and then executes a query over the l artist label, which is the view described
above. Consult [@musicbrainz contributors musicbrainz 2012] for more about the advanced views and
relationships.

In the following section we describe the four rounds of experiments we performed attempting to mine various
association rules for different query results from the database. and our results for various of them. One of
them did not produce good results, the other 3 produced a number of strong association rules.

MusicBrainz Associations

Which rules would be interesting to mine from the MusicBrainz dataset? The number of possible association
rules is virtually infinite so we limit the scope of this work to a few meaningful ones. We first define the
set of interesting rules we explored as part of this project, as well as the rationale behind them. We then
present the results.

Interesting Associations

Experiment 1:Rules for contracts with different record companies

One interesting association is related to how often an artist migrates from one record company to another
and whether there exist a label for which is very likely that an artist leaves it. This type of information can be
used by companies, since it might be an indication of how good is the public image of it, or even reflect that
something is not doing well internally. A company can also use that information to identify its adversaries.
The SQL query used is the one we used in the example above Thus, for this association, we’re interested
in finding which (and how many) labels imply having more than one label. We can get a high-level idea of
this by doing a quick analysis on the data. The arules package has many features that allow the user to
explore and visualize the data which we used to preprocess the transaction tables. We also used the summary
command to get information about the transaction table. Applying the itemFrequencyplot command we had
an image image of the frequent itemsets in the database which can be found in the appendix. We then used
the apriori function to do the mining. The results were not as expected:

> rules <- apriori(trans, parameter = list(support = 0.0015, confidence = 0.6))

..

8

..

writing ... [0 rule(s)] done [0.00s].

Lowering the support to extremely low levels, close to zero, we had thousands of meaningless association rules
whose support corresponds to exactly one transaction and therefore cannot be considered rules. Assessing
the results, we concluded that there is most likely two principal reasons that there are no such rules. First,
the mobility of the artists may be very low, and artists probably stick to the company that they had their
first contract with, and second, even when there are rules reported for very few transactions, they may refer
to the same company under alias name. Unfortunately, though the database contains a relation with label
aliases, information was very sparse, and we could not exploit it in some meaningful way.

Experiment 2: Roles of artists in different releases

A different type of association rules we mined is the association between the roles an artist has played in
his career across different releases. Somebody may have served as a vocalist and a guitarist and later as a
producer or mixer, so it would be interesting to see whether there are association rules there. We need to
perform the following query to get the data needed:
SELECT distinct entity0, t.name
FROM l artist release as w,link as l,link type as t
WHERE w.link=l.id and l.link type=t.id

using the advanced view l artist release. We plotted the most frequent roles which can be seen in
the plot in the appendix. We got a number of 18 rules, all with high lift, so there was no need to be pruned
any further. The support was chosen at 0.005, which is suitable for the relative frequencies present in the
dataset, and the confidence was at 0.6. Results can be seen in the appendix and they are quite interesting.
So, we can deduce for example by rule 11 that a person who has participated in the mix of a recording and
has composed some recording has with high confidence (>90%) produced some recording.

Experiment 3: Roles of artists in different works

As indicated above in the description of the schema, the relation work is one level above recordings and
releases. So, while a relase and a recording represent audio data, a work represents the composition behind
the recording. We mined association rules for artists and work in the same way as before. The frequent
itemsets are fewer this time, as can be seen from the frequency plot in the appendix (composer, lyricist,
writer etc.). Mining produced 2 rules. Overall, the results are less interesting than the previous experiment.
Results can be found in the appendix.

Experiment 4: Associations among languages used by artists

The final experiment examined the association among languages that an artist has released into. The value
multiple languages in the language attribute of a release indicates that the release contains more than one
languages, which are unspecified. The SQL query to obtain the results to be further processed for mining is
the following:
SELECT distinct entity0, l.name
FROM l artist release as ar,release as r, language as l
WHERE entity1=r.id and r.language=l.id
We performed the mining and got a very big number of association rules, many of them with negative
correlation (lift <1), so we used the subset command to obtain only the rules with lift >1.5, essentially
pruning the rules that have the English language to the right side. English is ubiquitous, it has a very

9

big support, and therefore the rules having it at the right side have low lift in general and do not provide
much information. Doing that we get a number of rules. We plot them using the group setting to get a
visualization of the strongest rules as can be seen at the plot in the appendix.

Conclusion

It has been a fruitful round of experiments that mine association rules from musicbrainz. The work allowed
us to master the details of the musicbrainz database schema and profoundly understand the problem of
association rules and their mining.
Musicbrainz lacks a number of information, such as popularity and genre, which could make our experiments
even more interesting by examining associations among different music genres and or use classification
techniques trying to predict popularity.
In general, future work could use information on works of music from different sources and combine them
with the information in musicbrainz to apply and test various classification techniques that would classify
artists, works, tracks and labels, building the training data from the external source.

References

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large
databases. SIGMOD Rec., 22(2):207–216, June 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. page
487–499, 1994.

[3] C. Borgelt. Efficient implementations of apriori and eclat. page 90, 2003.

[4] M. J. Crawley. The R Book. John Wiley & Sons, June 2007.

[5] B. Goethals and M. J. Zaki. Advances in frequent itemset mining implementations: report on FIMI’03.
SIGKDD Explor. Newsl., 6(1):109–117, June 2004.

[6] M. Hahsler, B. Grün, and K. Hornik. Introduction to arules: Mining association rules and frequent
item sets. SIGKDD EXPLORATIONS, 2:0–4, 2007.

[7] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques, Third Edition, volume 1.
Morgan Kaufmann, Jan. 2001.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD Rec.,
29(2):1–12, May 2000.

[9] MusicBrainz contributors. MusicBrainz Database/Schema. http://wiki.musicbrainz.org/

MusicBrainz_Database/Schema, 2012.

[10] G. Piatetsky-Shapiro, G. Piatetsky-Shapiro, and W. Frawley. Discovery, analysis, and presentation of
strong rules. In Knowledge Discovery in Databases. AAAI/MIT Press, 1991.

[11] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association
rules. Technical report, University of Rochester, Rochester, NY, USA, 1997.

10

http://wiki.musicbrainz.org/MusicBrainz_Database/Schema
http://wiki.musicbrainz.org/MusicBrainz_Database/Schema

Appendix

Experiment 1: Failed

Figure 2: Frequency plot for most frequent items in experiment 1

itemMatrix in sparse format with

1403 rows (elements/transactions) and

641 columns (items)

> rules <- apriori(trans, parameter = list(support = 0.0015, confidence = 0.6))

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.6 0.1 1 none FALSE TRUE 0.0015 1 10 rules

ext

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

11

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[641 item(s), 1403 transaction(s)] done [0.00s].

sorting and recoding items ... [105 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 done [0.00s].

writing ... [0 rule(s)] done [0.00s].

creating S4 object ... done [0.00s]

Experiment 2

Figure 3: Frequency plot for most frequent items in experiment 2

transactions as itemMatrix in sparse format with

66702 rows (elements/itemsets/transactions) and

37 columns (items) and a density of 0.03972651

most frequent items:

instrument producer vocal engineer composer (Other)

23135 13561 11159 5524 5282 39383

element (itemset/transaction) length distribution:

sizes

12

1 2 3 4 5 6 7 8 9 10 11 12 13

48615 10971 3878 1730 790 375 178 87 34 17 16 7 2

14 15

1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.00 1.00 1.47 2.00 15.00

includes extended item information - examples:

labels

1 arranger

2 art direction

3 audio

includes extended transaction information - examples:

transactionID

1 1

2 4

3 9

> itemFrequencyPlot(trans, topN = 20, cex.names = 0.8)

> rules <- apriori(trans, parameter = list(support = 0.005, confidence = 0.6))

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.6 0.1 1 none FALSE TRUE 0.005 1 10 rules

ext

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[37 item(s), 66702 transaction(s)] done [0.01s].

sorting and recoding items ... [26 item(s)] done [0.01s].

creating transaction tree ... done [0.02s].

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [18 rule(s)] done [0.00s].

creating S4 object ... done [0.01s].

> inspect(rules)

lhs rhs support confidence lift

1 {lyricist,

producer} => {composer} 0.005067314 0.7647059 9.656837

2 {mastering,

recording} => {mix} 0.005577044 0.8416290 11.116502

3 {mastering,

producer} => {mix} 0.005502084 0.6427320 8.489409

4 {arranger,

13

composer} => {producer} 0.007630956 0.7654135 3.764812

5 {arranger,

mix} => {producer} 0.006266679 0.9106754 4.479306

6 {arranger,

instrument} => {producer} 0.006881353 0.6219512 3.059169

7 {engineer,

recording} => {mix} 0.010044676 0.6399236 8.452314

8 {producer,

recording} => {mix} 0.013837666 0.6771827 8.944443

9 {instrument,

recording} => {producer} 0.005786933 0.6509275 3.201693

10 {engineer,

instrument} => {producer} 0.006446583 0.6677019 3.284201

11 {composer,

mix} => {producer} 0.009594915 0.9155937 4.503498

12 {composer,

vocal} => {instrument} 0.007645948 0.6938776 2.000563

13 {mix,

vocal} => {producer} 0.005696981 0.8102345 3.985271

14 {mix,

vocal} => {instrument} 0.005547060 0.7889126 2.274564

15 {instrument,

mix} => {producer} 0.010749303 0.7515723 3.696732

16 {producer,

vocal} => {instrument} 0.015351864 0.7447273 2.147171

17 {engineer,

mix,

recording} => {producer} 0.006026806 0.6000000 2.951198

18 {engineer,

producer,

recording} => {mix} 0.006026806 0.8072289 10.662135

Experiment 3

transactions as itemMatrix in sparse format with

48564 rows (elements/itemsets/transactions) and

11 columns (items) and a density of 0.113539

most frequent items:

composer lyricist writer orchestrator librettist (Other)

36392 17724 5015 480 344 698

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5

37651 9797 1060 52 4

Min. 1st Qu. Median Mean 3rd Qu. Max.

14

Figure 4: Frequency plot for most frequent items in experiment 3

15

1.000 1.000 1.000 1.249 1.000 5.000

includes extended item information - examples:

labels

1 arranger

2 composer

3 instrument arranger

includes extended transaction information - examples:

transactionID

1 10

2 15

3 16

> itemFrequencyPlot(trans, topN = 20, cex.names = 0.8)

> rules <- apriori(trans, parameter = list(support = 0.001, confidence = 0.6))

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.6 0.1 1 none FALSE TRUE 0.001 1 10 rules

ext

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[11 item(s), 48564 transaction(s)] done [0.01s].

sorting and recoding items ... [9 item(s)] done [0.00s].

creating transaction tree ... done [0.01s].

checking subsets of size 1 2 3 done [0.00s].

writing ... [3 rule(s)] done [0.00s].

creating S4 object ... done [0.01s].

> inspect(rules)

lhs rhs support confidence lift

1 {} => {composer} 0.749361667 0.7493617 1.000000

2 {lyricist,

orchestrator} => {composer} 0.001235483 0.9523810 1.270923

3 {lyricist,

writer} => {composer} 0.019335310 0.8376450 1.117811

Experiment 4

> summary(trans)

transactions as itemMatrix in sparse format with

66251 rows (elements/itemsets/transactions) and

89 columns (items) and a density of 0.0122632

16

Figure 5: Frequency plot for most frequent languages

17

Figure 6: Frequency plot for most frequent languages excluding english

18

Figure 7: Grouped plot for association rules with languages

19

most frequent items:

English [Multiple languages] German

51136 3896 3012

French Greek (Other)

2388 1734 10142

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5 6 7 8 9 11

61691 3553 681 223 66 22 10 3 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 1.000 1.091 1.000 11.000

includes extended item information - examples:

labels

1 Afrikaans

2 Akan

3 Amharic

includes extended transaction information - examples:

transactionID

1 1

2 4

3 9

> rules <- apriori(trans, parameter = list(support = 0.0001, confidence = 0.5))

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.5 0.1 1 none FALSE TRUE 1e-04 1 10 rules

ext

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[89 item(s), 66251 transaction(s)] done [0.00s].

sorting and recoding items ... [58 item(s)] done [0.01s].

creating transaction tree ... done [0.01s].

checking subsets of size 1 2 3 4 5 6 done [0.00s].

writing ... [136 rule(s)] done [0.00s].

creating S4 object ... done [0.01s].

> plot(rules, method="grouped")

> inspect(rules)

lhs rhs support confidence lift

20

1 {} => {English} 0.7718525003 0.7718525 1.0000000

2 {Malay} => {English} 0.0001056588 0.5384615 0.6976223

3 {Sami, Northern} => {English} 0.0001509411 0.9090909 1.1778039

4 {Czech,

Italian} => {English} 0.0001509411 0.9090909 1.1778039

5 {Czech,

German} => {English} 0.0001056588 1.0000000 1.2955843

6 {Czech,

[Multiple languages]} => {English} 0.0001509411 1.0000000 1.2955843

7 {German,

Norwegian} => {[Multiple languages]} 0.0001056588 1.0000000 17.0048768

8 {German,

Norwegian} => {English} 0.0001056588 1.0000000 1.2955843

9 {[Multiple languages],

Norwegian} => {English} 0.0002113176 0.7000000 0.9069090

10 {Dutch,

German} => {English} 0.0001358470 0.5625000 0.7287662

11 {Dutch,

[Multiple languages]} => {English} 0.0001660352 0.7333333 0.9500952

12 {Italian,

Portuguese} => {English} 0.0001056588 0.8750000 1.1336363

13 {French,

Portuguese} => {English} 0.0002113176 0.9333333 1.2092120

14 {German,

Portuguese} => {English} 0.0001056588 0.7777778 1.0076767

15 {[Multiple languages],

Portuguese} => {English} 0.0003773528 0.6944444 0.8997113

16 {Estonian,

Finnish} => {English} 0.0001207529 0.8888889 1.1516305

17 {Latvian,

Russian} => {English} 0.0003018822 0.5263158 0.6818865

18 {Latin,

Russian} => {English} 0.0001056588 1.0000000 1.2955843

19 {French,

Russian} => {English} 0.0001207529 0.6666667 0.8637229

20 {German,

Russian} => {[Multiple languages]} 0.0001358470 0.5625000 9.5652432

21 {German,

Russian} => {English} 0.0001811293 0.7500000 0.9716882

22 {[Multiple languages],

Russian} => {English} 0.0002716940 0.6000000 0.7773506

23 {Spanish,

Swedish} => {English} 0.0001056588 1.0000000 1.2955843

24 {French,

Swedish} => {English} 0.0001207529 0.8888889 1.1516305

25 {German,

Swedish} => {[Multiple languages]} 0.0001056588 0.6363636 10.8212852

26 {German,

Swedish} => {English} 0.0001660352 1.0000000 1.2955843

27 {[Multiple languages],

Swedish} => {English} 0.0002867881 0.7307692 0.9467732

21

28 {Finnish,

[Multiple languages]} => {English} 0.0002716940 0.6923077 0.8969430

29 {Latvian,

[Multiple languages]} => {English} 0.0003169763 0.5121951 0.6635920

30 {Latin,

Spanish} => {[Multiple languages]} 0.0001207529 0.6153846 10.4645396

31 {Latin,

Spanish} => {English} 0.0001660352 0.8461538 1.0962637

32 {Italian,

Latin} => {German} 0.0006943291 0.5974026 13.1402787

33 {Italian,

Latin} => {[Multiple languages]} 0.0006792350 0.5844156 9.9379150

34 {Italian,

Latin} => {English} 0.0009660232 0.8311688 1.0768493

35 {French,

Latin} => {English} 0.0007697997 0.7611940 0.9861911

36 {German,

Latin} => {English} 0.0012528113 0.8469388 1.0972806

37 {Latin,

[Multiple languages]} => {English} 0.0014188465 0.7966102 1.0320756

38 {French,

Japanese} => {English} 0.0001056588 0.8750000 1.1336363

39 {German,

Japanese} => {[Multiple languages]} 0.0001056588 0.5833333 9.9195115

40 {German,

Japanese} => {English} 0.0001660352 0.9166667 1.1876190

41 {Japanese,

[Multiple languages]} => {English} 0.0004528234 0.5555556 0.7197691

42 {Italian,

Spanish} => {English} 0.0002113176 0.7368421 0.9546411

43 {German,

Spanish} => {French} 0.0001660352 0.5500000 15.2588149

44 {French,

Spanish} => {English} 0.0004981057 0.7674419 0.9942856

45 {German,

Spanish} => {[Multiple languages]} 0.0001660352 0.5500000 9.3526822

46 {German,

Spanish} => {English} 0.0002867881 0.9500000 1.2308051

47 {[Multiple languages],

Spanish} => {English} 0.0008452703 0.5137615 0.6656213

48 {French,

Italian} => {English} 0.0016150700 0.7133333 0.9241835

49 {German,

Italian} => {[Multiple languages]} 0.0014792230 0.5240642 8.9116467

50 {German,

Italian} => {English} 0.0022792109 0.8074866 1.0461670

51 {Italian,

[Multiple languages]} => {English} 0.0027320342 0.8116592 1.0515729

52 {French,

German} => {[Multiple languages]} 0.0012829995 0.5592105 9.5093061

53 {French,

22

German} => {English} 0.0019169522 0.8355263 1.0824948

54 {French,

[Multiple languages]} => {English} 0.0030188224 0.7380074 0.9561508

55 {German,

[Multiple languages]} => {English} 0.0042565395 0.7401575 0.9589364

56 {German,

[Multiple languages],

Norwegian} => {English} 0.0001056588 1.0000000 1.2955843

57 {English,

German,

Norwegian} => {[Multiple languages]} 0.0001056588 1.0000000 17.0048768

58 {English,

[Multiple languages],

Norwegian} => {German} 0.0001056588 0.5000000 10.9978420

59 {German,

[Multiple languages],

Russian} => {English} 0.0001358470 1.0000000 1.2955843

60 {English,

German,

Russian} => {[Multiple languages]} 0.0001358470 0.7500000 12.7536576

61 {English,

[Multiple languages],

Russian} => {German} 0.0001358470 0.5000000 10.9978420

62 {German,

[Multiple languages],

Swedish} => {English} 0.0001056588 1.0000000 1.2955843

63 {English,

German,

Swedish} => {[Multiple languages]} 0.0001056588 0.6363636 10.8212852

64 {Latin,

[Multiple languages],

Spanish} => {English} 0.0001207529 1.0000000 1.2955843

65 {English,

Latin,

Spanish} => {[Multiple languages]} 0.0001207529 0.7272727 12.3671831

66 {French,

Italian,

Latin} => {German} 0.0002565999 0.6800000 14.9570651

67 {French,

German,

Latin} => {Italian} 0.0002565999 0.5666667 29.4218130

68 {French,

Italian,

Latin} => {[Multiple languages]} 0.0002415058 0.6400000 10.8831211

69 {French,

Latin,

[Multiple languages]} => {Italian} 0.0002415058 0.5000000 25.9604232

70 {French,

Italian,

Latin} => {English} 0.0003018822 0.8000000 1.0364675

71 {German,

23

Italian,

Latin} => {[Multiple languages]} 0.0004830116 0.6956522 11.8294795

72 {Italian,

Latin,

[Multiple languages]} => {German} 0.0004830116 0.7111111 15.6413752

73 {German,

Latin,

[Multiple languages]} => {Italian} 0.0004830116 0.6808511 35.3503635

74 {German,

Italian,

Latin} => {English} 0.0006641409 0.9565217 1.2392546

75 {English,

Italian,

Latin} => {German} 0.0006641409 0.6875000 15.1220327

76 {English,

German,

Latin} => {Italian} 0.0006641409 0.5301205 27.5243041

77 {Italian,

Latin,

[Multiple languages]} => {English} 0.0006490468 0.9555556 1.2380028

78 {English,

Italian,

Latin} => {[Multiple languages]} 0.0006490468 0.6718750 11.4251516

79 {French,

German,

Latin} => {[Multiple languages]} 0.0002867881 0.6333333 10.7697553

80 {French,

Latin,

[Multiple languages]} => {German} 0.0002867881 0.5937500 13.0599373

81 {French,

German,

Latin} => {English} 0.0004226351 0.9333333 1.2092120

82 {English,

French,

Latin} => {German} 0.0004226351 0.5490196 12.0760618

83 {French,

Latin,

[Multiple languages]} => {English} 0.0003924469 0.8125000 1.0526623

84 {English,

French,

Latin} => {[Multiple languages]} 0.0003924469 0.5098039 8.6691529

85 {German,

Latin,

[Multiple languages]} => {English} 0.0006792350 0.9574468 1.2404531

86 {English,

German,

Latin} => {[Multiple languages]} 0.0006792350 0.5421687 9.2195115

87 {German,

Japanese,

[Multiple languages]} => {English} 0.0001056588 1.0000000 1.2955843

88 {English,

24

German,

Japanese} => {[Multiple languages]} 0.0001056588 0.6363636 10.8212852

89 {French,

Italian,

Spanish} => {English} 0.0001207529 1.0000000 1.2955843

90 {English,

Italian,

Spanish} => {French} 0.0001207529 0.5714286 15.8533142

91 {Italian,

[Multiple languages],

Spanish} => {English} 0.0001207529 0.8888889 1.1516305

92 {English,

Italian,

Spanish} => {[Multiple languages]} 0.0001207529 0.5714286 9.7170725

93 {French,

German,

Spanish} => {[Multiple languages]} 0.0001056588 0.6363636 10.8212852

94 {German,

[Multiple languages],

Spanish} => {French} 0.0001056588 0.6363636 17.6548272

95 {French,

German,

Spanish} => {English} 0.0001660352 1.0000000 1.2955843

96 {English,

German,

Spanish} => {French} 0.0001660352 0.5789474 16.0619104

97 {French,

[Multiple languages],

Spanish} => {English} 0.0002264117 0.8333333 1.0796536

98 {German,

[Multiple languages],

Spanish} => {English} 0.0001660352 1.0000000 1.2955843

99 {English,

German,

Spanish} => {[Multiple languages]} 0.0001660352 0.5789474 9.8449287

100 {French,

German,

Italian} => {[Multiple languages]} 0.0006490468 0.7166667 12.1868284

101 {French,

Italian,

[Multiple languages]} => {German} 0.0006490468 0.5972222 13.1363112

102 {French,

German,

[Multiple languages]} => {Italian} 0.0006490468 0.5058824 26.2658399

103 {French,

German,

Italian} => {English} 0.0007999879 0.8833333 1.1444328

104 {French,

Italian,

[Multiple languages]} => {English} 0.0009509290 0.8750000 1.1336363

105 {English,

25

French,

Italian} => {[Multiple languages]} 0.0009509290 0.5887850 10.0122172

106 {German,

Italian,

[Multiple languages]} => {English} 0.0013735642 0.9285714 1.2030426

107 {English,

German,

Italian} => {[Multiple languages]} 0.0013735642 0.6026490 10.2479721

108 {English,

Italian,

[Multiple languages]} => {German} 0.0013735642 0.5027624 11.0586035

109 {French,

German,

[Multiple languages]} => {English} 0.0011924348 0.9294118 1.2041313

110 {English,

French,

German} => {[Multiple languages]} 0.0011924348 0.6220472 10.5778367

111 {French,

German,

Italian,

Latin} => {[Multiple languages]} 0.0002113176 0.8235294 14.0040162

112 {French,

Italian,

Latin,

[Multiple languages]} => {German} 0.0002113176 0.8750000 19.2462234

113 {French,

German,

Latin,

[Multiple languages]} => {Italian} 0.0002113176 0.7368421 38.2574658

114 {French,

German,

Italian,

Latin} => {English} 0.0002415058 0.9411765 1.2193735

115 {English,

French,

Italian,

Latin} => {German} 0.0002415058 0.8000000 17.5965471

116 {English,

French,

German,

Latin} => {Italian} 0.0002415058 0.5714286 29.6690551

117 {French,

Italian,

Latin,

[Multiple languages]} => {English} 0.0002113176 0.8750000 1.1336363

118 {English,

French,

Italian,

Latin} => {[Multiple languages]} 0.0002113176 0.7000000 11.9034138

119 {English,

French,

26

Latin,

[Multiple languages]} => {Italian} 0.0002113176 0.5384615 27.9573788

120 {German,

Italian,

Latin,

[Multiple languages]} => {English} 0.0004679175 0.9687500 1.2550973

121 {English,

German,

Italian,

Latin} => {[Multiple languages]} 0.0004679175 0.7045455 11.9807087

122 {English,

Italian,

Latin,

[Multiple languages]} => {German} 0.0004679175 0.7209302 15.8573535

123 {English,

German,

Latin,

[Multiple languages]} => {Italian} 0.0004679175 0.6888889 35.7676942

124 {French,

German,

Latin,

[Multiple languages]} => {English} 0.0002716940 0.9473684 1.2273957

125 {English,

French,

German,

Latin} => {[Multiple languages]} 0.0002716940 0.6428571 10.9317065

126 {English,

French,

Latin,

[Multiple languages]} => {German} 0.0002716940 0.6923077 15.2277812

127 {French,

German,

[Multiple languages],

Spanish} => {English} 0.0001056588 1.0000000 1.2955843

128 {English,

French,

German,

Spanish} => {[Multiple languages]} 0.0001056588 0.6363636 10.8212852

129 {English,

German,

[Multiple languages],

Spanish} => {French} 0.0001056588 0.6363636 17.6548272

130 {French,

German,

Italian,

[Multiple languages]} => {English} 0.0005886704 0.9069767 1.1750649

131 {English,

French,

German,

Italian} => {[Multiple languages]} 0.0005886704 0.7358491 12.5130225

132 {English,

27

French,

Italian,

[Multiple languages]} => {German} 0.0005886704 0.6190476 13.6163758

133 {French,

German,

Italian,

Latin,

[Multiple languages]} => {English} 0.0001962235 0.9285714 1.2030426

134 {English,

French,

German,

Italian,

Latin} => {[Multiple languages]} 0.0001962235 0.8125000 13.8164624

135 {English,

French,

Italian,

Latin,

[Multiple languages]} => {German} 0.0001962235 0.9285714 20.4245637

136 {English,

French,

German,

Latin,

[Multiple languages]} => {Italian} 0.0001962235 0.7222222 37.4983891

> subrules <- rules[quality(rules)$lift > 1.5]

> inspect(subrules)

lhs rhs support confidence lift

1 {German,

Norwegian} => {[Multiple languages]} 0.0001056588 1.0000000 17.004877

2 {German,

Russian} => {[Multiple languages]} 0.0001358470 0.5625000 9.565243

3 {German,

Swedish} => {[Multiple languages]} 0.0001056588 0.6363636 10.821285

4 {Latin,

Spanish} => {[Multiple languages]} 0.0001207529 0.6153846 10.464540

5 {Italian,

Latin} => {German} 0.0006943291 0.5974026 13.140279

6 {Italian,

Latin} => {[Multiple languages]} 0.0006792350 0.5844156 9.937915

7 {German,

Japanese} => {[Multiple languages]} 0.0001056588 0.5833333 9.919511

8 {German,

Spanish} => {French} 0.0001660352 0.5500000 15.258815

9 {German,

Spanish} => {[Multiple languages]} 0.0001660352 0.5500000 9.352682

10 {German,

Italian} => {[Multiple languages]} 0.0014792230 0.5240642 8.911647

11 {French,

German} => {[Multiple languages]} 0.0012829995 0.5592105 9.509306

12 {English,

German,

28

Norwegian} => {[Multiple languages]} 0.0001056588 1.0000000 17.004877

13 {English,

[Multiple languages],

Norwegian} => {German} 0.0001056588 0.5000000 10.997842

14 {English,

German,

Russian} => {[Multiple languages]} 0.0001358470 0.7500000 12.753658

15 {English,

[Multiple languages],

Russian} => {German} 0.0001358470 0.5000000 10.997842

16 {English,

German,

Swedish} => {[Multiple languages]} 0.0001056588 0.6363636 10.821285

17 {English,

Latin,

Spanish} => {[Multiple languages]} 0.0001207529 0.7272727 12.367183

18 {French,

Italian,

Latin} => {German} 0.0002565999 0.6800000 14.957065

19 {French,

German,

Latin} => {Italian} 0.0002565999 0.5666667 29.421813

20 {French,

Italian,

Latin} => {[Multiple languages]} 0.0002415058 0.6400000 10.883121

21 {French,

Latin,

[Multiple languages]} => {Italian} 0.0002415058 0.5000000 25.960423

22 {German,

Italian,

Latin} => {[Multiple languages]} 0.0004830116 0.6956522 11.829480

23 {Italian,

Latin,

[Multiple languages]} => {German} 0.0004830116 0.7111111 15.641375

24 {German,

Latin,

[Multiple languages]} => {Italian} 0.0004830116 0.6808511 35.350364

25 {English,

Italian,

Latin} => {German} 0.0006641409 0.6875000 15.122033

26 {English,

German,

Latin} => {Italian} 0.0006641409 0.5301205 27.524304

27 {English,

Italian,

Latin} => {[Multiple languages]} 0.0006490468 0.6718750 11.425152

28 {French,

German,

Latin} => {[Multiple languages]} 0.0002867881 0.6333333 10.769755

29 {French,

Latin,

29

[Multiple languages]} => {German} 0.0002867881 0.5937500 13.059937

30 {English,

French,

Latin} => {German} 0.0004226351 0.5490196 12.076062

31 {English,

French,

Latin} => {[Multiple languages]} 0.0003924469 0.5098039 8.669153

32 {English,

German,

Latin} => {[Multiple languages]} 0.0006792350 0.5421687 9.219512

33 {English,

German,

Japanese} => {[Multiple languages]} 0.0001056588 0.6363636 10.821285

34 {English,

Italian,

Spanish} => {French} 0.0001207529 0.5714286 15.853314

35 {English,

Italian,

Spanish} => {[Multiple languages]} 0.0001207529 0.5714286 9.717072

36 {French,

German,

Spanish} => {[Multiple languages]} 0.0001056588 0.6363636 10.821285

37 {German,

[Multiple languages],

Spanish} => {French} 0.0001056588 0.6363636 17.654827

38 {English,

German,

Spanish} => {French} 0.0001660352 0.5789474 16.061910

39 {English,

German,

Spanish} => {[Multiple languages]} 0.0001660352 0.5789474 9.844929

40 {French,

German,

Italian} => {[Multiple languages]} 0.0006490468 0.7166667 12.186828

41 {French,

Italian,

[Multiple languages]} => {German} 0.0006490468 0.5972222 13.136311

42 {French,

German,

[Multiple languages]} => {Italian} 0.0006490468 0.5058824 26.265840

43 {English,

French,

Italian} => {[Multiple languages]} 0.0009509290 0.5887850 10.012217

44 {English,

German,

Italian} => {[Multiple languages]} 0.0013735642 0.6026490 10.247972

45 {English,

Italian,

[Multiple languages]} => {German} 0.0013735642 0.5027624 11.058604

46 {English,

French,

30

German} => {[Multiple languages]} 0.0011924348 0.6220472 10.577837

47 {French,

German,

Italian,

Latin} => {[Multiple languages]} 0.0002113176 0.8235294 14.004016

48 {French,

Italian,

Latin,

[Multiple languages]} => {German} 0.0002113176 0.8750000 19.246223

49 {French,

German,

Latin,

[Multiple languages]} => {Italian} 0.0002113176 0.7368421 38.257466

50 {English,

French,

Italian,

Latin} => {German} 0.0002415058 0.8000000 17.596547

51 {English,

French,

German,

Latin} => {Italian} 0.0002415058 0.5714286 29.669055

52 {English,

French,

Italian,

Latin} => {[Multiple languages]} 0.0002113176 0.7000000 11.903414

53 {English,

French,

Latin,

[Multiple languages]} => {Italian} 0.0002113176 0.5384615 27.957379

54 {English,

German,

Italian,

Latin} => {[Multiple languages]} 0.0004679175 0.7045455 11.980709

55 {English,

Italian,

Latin,

[Multiple languages]} => {German} 0.0004679175 0.7209302 15.857354

56 {English,

German,

Latin,

[Multiple languages]} => {Italian} 0.0004679175 0.6888889 35.767694

57 {English,

French,

German,

Latin} => {[Multiple languages]} 0.0002716940 0.6428571 10.931707

58 {English,

French,

Latin,

[Multiple languages]} => {German} 0.0002716940 0.6923077 15.227781

59 {English,

French,

31

German,

Spanish} => {[Multiple languages]} 0.0001056588 0.6363636 10.821285

60 {English,

German,

[Multiple languages],

Spanish} => {French} 0.0001056588 0.6363636 17.654827

61 {English,

French,

German,

Italian} => {[Multiple languages]} 0.0005886704 0.7358491 12.513023

62 {English,

French,

Italian,

[Multiple languages]} => {German} 0.0005886704 0.6190476 13.616376

63 {English,

French,

German,

Italian,

Latin} => {[Multiple languages]} 0.0001962235 0.8125000 13.816462

64 {English,

French,

Italian,

Latin,

[Multiple languages]} => {German} 0.0001962235 0.9285714 20.424564

65 {English,

French,

German,

Latin,

[Multiple languages]} => {Italian} 0.0001962235 0.7222222 37.498389

32

	Introduction
	Frequent Patterns and Association Rules
	MusicBrainz
	The database
	Schema general description
	Artist
	Artist credit
	Release group

	Release
	Medium
	Tracklist

	Track
	Recording

	Work
	Label
	Advanced relationships

	Data preparation
	MusicBrainz Associations
	Interesting Associations
	Experiment 1:Rules for contracts with different record companies
	Experiment 2: Roles of artists in different releases
	Experiment 3: Roles of artists in different works
	Experiment 4: Associations among languages used by artists

	Conclusion
	Appendix
	Experiment 1: Failed
	Experiment 2
	Experiment 3
	Experiment 4

