Modeling of kink-shaped carbon-nanotube Schottky diode with gate bias modulation

Toshishige Yamada

NASA Ames Research Center, M/S 229-I, Moffett Field, California 94035-1000

(Received 16 July 2001; accepted for publication 27 March 2002)

A model is proposed for the recent gate voltage V_G modulation experiment of a kink-shaped carbon nanotube (NT) Schottky diode [Z. Yao, H. Postma, L. Balents, and C. Dekker, Nature (London) 402, 273 (1999)]. Since larger V_G increases both the forward and the reverse turn-on voltages of the diode, we show that: (1) the rectification must occur at the kink where the metallic and the semiconducting NTs meet, and not at the electrode contact, and (2) the semiconducting NT must be n type. The turn-on voltages are derived analytically as a function of V_G considering the electrode contact contribution and a good agreement is obtained with the experimental data. © 2002 American Institute of Physics. [DOI: 10.1063/1.1481213]

Recently, the Delft group has observed rectifying current–voltage characteristics for a fused kink-shaped carbon nanotube (NT) metal–semiconductor (MS) diode.¹ They applied the gate voltage V_G to change the carrier density in the semiconducting NT and modulated the diode characteristics. Previous analysis focused on the two-terminal properties with a one-dimensional (1D) coherent transport model in a self-consistent field.² In this letter, we will emphasize the three-terminal properties, i.e., how V_G modulates the diode characteristics. From this V_G dependence, we show that: (1) the rectification occurred at the NT MS junction and not at the electrode contact, and (2) the carriers involved in the transport must be electrons rather than holes, unlike commonly observed p-type NTs.

In Ref. 1, they placed NTs on TiAu electrodes on a SiO$_2$/doped-Si substrate (backgate) as in Fig. 1(a) and applied V_G to the backgate with electrode 3 grounded under a low temperature environment of 100 K. The circuit between electrodes 0 and 1 showed linear characteristics (110 kΩ) without noticeable V_G dependence. Thus, the left NT was metallic. However, the circuit between electrodes 1 and 3 across 2 showed rectifying characteristics with appreciable V_G dependence as in Fig. 1(b). Therefore, the right NT had to be semiconducting. We introduce an equivalent circuit with drain current I_D and voltage V_D at electrode 1. A linear resistor R_1 represents contact 1. V_G modulates the carrier density in the semiconducting NT and a capacitor C_{NT} represents the capacitance with respect to the substrate. The metallic and the semiconducting NTs meet at kink 2, and a MS junction J_2 is formed. The semiconducting NT reaches electrode 3 and a semiconductor–metal (SM) junction J_3 is formed. For rectification to take place, either J_2 or J_3 should be a Schottky diode and the other should be a resistive element. In fact, if both are Schottky diodes, then J_2 and J_3 are either front-to-front $(+|>|<|)$ or back-to-back $(+|<|>|<|)$ connected by sharing the semiconducting NT and will allow only negligible current through them. If both are resistive elements allowing current in both polarities, then there is no mechanism for rectification.

The forward direction occurred when $V_D>0$.¹ Thus, two equivalent circuits are possible: J_2 is a Schottky diode with an n-type NT and J_3 is a resistor as in Fig. 2(a), or J_2 is a resistor and J_3 is a Schottky diode with a p-type NT as in Fig. 2(b). We introduce forward and reverse turn-on voltages for a diode, V_{onF} and V_{onR}, respectively,³ corresponding to the onset of I_D. The experimental V_G dependence is such that: if $V_G < V'_G$, then $0 < V_{onF} < V'_{onF}$ and $V_{onR} < V'_{onR} < 0$ as in Fig. 1(b), where a prime indicates a quantity at V'_G. Or increasing V_G shifts both V_{onF} and V_{onR} in the positive V_D direction.

¹Electronic mail: yamada@nas.nasa.gov
Schottky barriers for electrons at voltages shown in Figs. 2 and 3 of selected Si NTs. Energy band diagrams for Si NT–electrode SM cases are examined, thus, $\mid V_{bi} \mid < \mid V'_{bi} \mid$ and $V_{onR} < V'_{onR}$. This is also consistent with the experiment.

However, neither trends for V_{onF} and V_{onR} are explained by the p-NT scenario with D₃ as in Fig. 2(b). Increasing V_{G} results in lower hole density and ξ increases. Thus, again $\xi < \xi'$. However, $V_{bi} > V_{bi}'$ for holes as shown in Figs. 2(i) and 2(j). Thus, $V_{onF} > V'_{onF}$ in the forward direction, but this is contrary to the experiment. In the reverse direction, the effective doping is smaller for larger V_{G} and the Schottky barrier is thicker. Thus, $\mid V_{bi} \mid < \mid V_{bi}' \mid$ and $V_{onR} > V'_{onR}$. This is again contrary to the experiment. Therefore, we conclude that: (1) the rectification occurred at D_2, and (2) the NT must be n type.

We will express V_{onF} and V_{onR} as a function of V_{G} based on this view. Since the onset of I_D is our present interest, we do not solve the transport problem but identify the diode turn-on voltages. This is practically enough for many electronics applications. V₃ attracts or repels electrons through contact 3 (electrodes are infinite charge reservoirs), and causes a linear change in ξ, such that $\xi(V_{bi}) = \xi(0) + \alpha V_{bi}$. The coefficient α is related to the NT state density and C_{NT}, and thus depends on the quasi-1D NT band structure as well as the detailed device geometry including the SiO₂ layer. The NT specific information is embedded in α. By inspecting the band diagram in Fig. 2(c), we have $eV_{bi} = \phi_{NT} - \phi_{Au} - [E_G - \xi(V_{G})]$. The forward turn on is achieved by applying $V_{D2} = V_{bi}$. Thus, the forward turn-on modulation by V_{G} is given by $\Delta V_{bi}(V_{G}) = \alpha \Delta V_{G}$.

The reverse turn on for a different V_{G} occurs when the Schottky barrier has the same slope (electric field) at the junction. In this case, transport electrons see the same Schottky barrier height and the width since ϕ_{NT} is independent of V_{G}. The electric field at the junction is proportional to $[(V_{bi} + |V_{bi}'|)N_d]^{1/2}$ based on the planar junction theory. By equating $V_{bi} + |V_{bi}'| = N_d'$ for finite and zero V_{G} cases with an ionized donor density N_d', we have $(V_{bi} + |V_{bi}'| - \alpha V_{G})(N_d' + N_d'V_{bi}/(V_{bi} + |V_{bi}'|)) = (V_{bi} + |V_{bi}'|)N_d'$, where the subscript 0 refers to $V_G=0$. $V_{bi} = -\beta (\leq 0)$ is a voltage such that the electrons are repelled completely, and the NT becomes intrinsic. The reverse turn on is achieved by applying $V_{D2} = V_{bi}$. Therefore, the modulation is given by $\Delta V_{bi}(V_{G}) = -(\mid V_{bi} \mid - \mid V_{bi}' \mid) = \alpha \Delta V_{G} - \Delta(V_{bi} + |V_{bi}'|)$.

E_c and E_v are conduction and valence band edges with a band gap E_g. ξ is a chemical potential $E_{FS} - E_v$ and χ is an electron affinity. $V_{bi} (>0)$ is a built-in voltage and $V_{bi} (<0)$ is a breakdown voltage. $e (>0)$ is the unit charge.

We examine the n-NT scenario with D_2 as in Fig. 2(a) and compare the influences of V_{G}. Increasing V_{G} results in higher electron density, and ξ increases. Thus, $\xi < \xi'$ and we may think that the doping is effectively increased. Since ϕ_{NT} is independent of V_{G}, $V_{bi} > V_{bi}'$ as shown in Figs. 2(c) and 2(d). In the thermionic emission 3 (Ref. 2 estimated a thick Schottky barrier of several nanometers), the forward turn-on occurs when $V_D - V_{bi}$. Therefore, $V_{onF} < V'_{onF}$, as in Figs. 2(e) and 2(f). This is consistent with the experiment. The reverse turn on occurs when the gradient and the width of the Schottky barrier exceed certain thresholds or $V_D - V_{bi}$. This is the beginning of the tunneling breakdown. The effective doping is larger for larger V_{G}, leading to the thinner Schottky barrier as in Figs. 2(g) and 2(h).

Thus, $\mid V_{bi} \mid < \mid V_{bi}' \mid$ and $V_{onR} < V'_{onR}$. This is also consistent with the experiment.

Such V_{G} dependence is possible with an n-NT, but not with a p-NT. The band diagrams for Schottky diode D_2 of n type in Fig. 2(a) are shown in Figs. 2(c)–2(h) for selected D_2 voltages V_{D2}, and those for D_3 of p type in Fig. 2(b) are shown in Figs. 2(i)–2(j) for null D_3 voltage V_{D3}, respectively. We compare small V_{G} (left) and large V_{G} (right) cases. ϕ_M is a metallic NT work function. ϕ_{NT} and ϕ_{Au} are Schottky barriers for electrons at D_2 and holes at D_3, respectively. E_{FM} and E_{FS} are electrochemical potentials, ξ is a chemical potential, E_v and E_c are conduction and valence band edges with a band gap E_g. V_{bi} and V_{bi}' are built-in and breakdown voltages, and χ is an electron affinity.