
CSE211: Compiler Design 
Oct. 8, 2020

• Topic: Parsing

• Questions:
• What is operator precedence? What is it in 

your favorite languages

• What is operator associativity? What 
operators are associative and what are not?



Announcements

• Homework released! Have a look 
but don’t panic
• Remember, due dates pushed back 1 

week

• We will go over parsing with 
derivatives this/next week

• We will go over PLY this/next week



CSE211: Compiler Design 
Oct. 8, 2020

• Topic: Parsing

• Questions:
• What is operator precedence? What is it in 

your favorite languages

• What is operator associativity? What 
operators are associative and what are not?



High-level parser

ParserInput

A string Language
Recognizer for 

language L

Reject

Accept
structured data 

(e.g. AST)

continue to the rest 
of compilation



Parser architecture

First level of 
abstraction.

Transforms a string of 
characters into a string

of tokens

Second level:
transforms a string 

of tokens in a tree of 
tokens.

Language:
Regular Expressions 

(REs)

Language:
Context-Free Grammars 

(CFGs)

Parser

Parser
Scanner 
(Lexer)

(Tokenizer)



BNF specification of context-free grammar

• Sentence: 
• ARTICLE ADJECTIVE* NOUN VERB The big red fox jumped

The fox jumped



BNF specification of context-free grammar

• Production rules:

• <production name> : <token>*
• Example: 

sentence: ARTICLE ADJECTIVE NOUN VERB

• <production name> : <token>* | <token>*
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB 

| ARTICLE NOUN VERB



BNF specification of context-free grammar

• Production rules can reference other production rules

sentence: adjective_sentence
| non_adjective_sentence

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

non_adjective_sentence: ARTICLE NOUN VERB 



BNF specification of context-free grammar

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB



BNF specification of context-free grammar

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
| <empty>



BNF specification of context-free grammar

• Sentence: 
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

• NUM
• NUM PLUS NUM
• NUM TIMES NUM
• NUM PLUS NUM TIMES NUM
• ….



Production rules for expressions

expression : NUM 
| NUM PLUS NUM
| NUM TIMES NUM



Production rules for expressions

expression : NUM 
| NUM PLUS NUM
| NUM TIMES NUM

expression : NUM 
| expression PLUS expression
| expression TIMES expression



Why not just use regular expressions?

• NUM = “[0-9]+”



Why not just use regular expressions?

• NUM = “[0-9]+”
• OP = “+|*”



Why not just use regular expressions?

• NUM = “[0-9]+”
• OP = “+|*”
• expression = “NUM (OP NUM)*”



Why not just use regular expressions?

• NUM = “[0-9]+”
• OP = “+|*”
• expression = “NUM (OP NUM)*”

For example, this matches: “1+2+5600+6*7”



What about ()’s

• there is a formal proof available that regex CANNOT match ()’s: 
pumping lemma

• Informal argument:
• Try matching ((^n)()^n) using Kleene star

• What about production rules?



For proof sketch:

Why we can’t match () with regex:

can we match: “((())” “ \(*\)*”



BNF for expressions

expression : NUM 
| expression PLUS expression
| expression TIMES expression



BNF for expressions

expression : NUM 
| expression PLUS expression
| expression TIMES expression
| LPAREN expression RPAREN



BNF for expressions

expression : NUM 
| expression PLUS expression
| expression TIMES expression
| LPAREN expression RPAREN

Where else in programming languages are matching constructs used?



Exercise



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: 5



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

input: 5



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

<NUM, 5>

input: 5



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: 5*6



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

input: 5*6



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

expr <TIMES>

input: 5*6

expr



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

<NUM, 5>

expr

<NUM, 6>

<TIMES>

input: 5*6

expr



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

input: 5**6

What happens
in an error?



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

expr <TIMES>

input: 5**6

expr

What happens
in an error?



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

expr

<TIMES>

expr

<NUM, 6>

<TIMES>

input: 5**6

expr

<NUM, 5>

Not possible!

What happens
in an error?



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6

expr



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6

expr

expr <TIMES> expr



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6>



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• How to create a parse tree from a string?

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• How to create a string from a parse tree?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6



Parse trees

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>



Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN



Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM 

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN



Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for 

language L

Reject

Accept



Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for 

language L

Reject

Accept
structured data 

(e.g. AST)

continue to the rest 
of compilation



Meaning into structure

• Structural meaning defined to be a post-order traversal 



Meaning into structure

• Structural meaning defined to be a post-order traversal 
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right



Meaning into structure

• Structural meaning defined to be a post-order traversal 
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right

• Also called natural order
• Traditionally encodes the order of operation



Work through examples input: 1+5*6



Work through examples input: 1+5*6



Meaning into structure

• How to avoid ambiguity related to 
precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define 
how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc

input: 1 + 5 * 6



Meaning into structure

• How to avoid ambiguity related to 
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the 
following:
• + * ()



Precedence example

• How to avoid ambiguity related to 
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the 
following:
• + * ()



Precedence example

• How to avoid ambiguity related to 
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the 
following:
• + * ()

Operator Name Productions

+ Expr : Expr + Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

Precedence
increases going down



Precedence example

Operator Name Productions

+ Expr : Expr + Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

• How to avoid ambiguity related to 
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the 
following:
• + * ()

Precedence
increases going down



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

input: 1+5*6



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

expr

input: 1+5*6



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

expr

expr <PLUS> expr

input: 1+5*6



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

term



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term



Now lets create a parse tree

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor



Regular expression example

Operator Name Productions

| union : union \| union
| concat

. concat : concat . concat
| starred

* starred : starred *
| unit

() unit : (union)
| CHAR

Let’s try it for regular expressions, {| . * ()}



Regular expression example

Operator Name Productions

| union : union \| union
| concat

. concat : concat . concat
| starred

* starred : starred *
| unit

() unit : (union)
| CHAR

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*



Regular expression example

Operator Name Productions

| union : union \| union
| concat

. concat : concat . concat
| starred

* starred : starred *
| unit

() unit : (union)
| CHAR

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

union

union <|> union

starred

concat

concat

concat

<CHAR, c>

unit <*>

concat

starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>



Are we finished?

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

input: 2+3+4



Are we finished?

Operator Name Productions

+ Expr : Expr+Expr
| Term

* Term : Term * Term
| Factor

() Factor : (Expr)
| NUM

input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor



Are we finished?
input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor



Are we finished?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

-5 3



Associativity

• Some operators are associative (+,*). 
• You should define associativity anyways! Avoid nondeterminism!

• Some are left associative (-, /)

• Are any right associative? ^



Meaning into structure

• How to avoid ambiguity related to precedence?

• Some parser generators allow you to specify it, e.g. Yacc

• You can also modify production rules:
• left associative has recursion on the left
• right associative has recursion on the right



Putting it together

• expressions with {+ - * / ^}

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Pow
: Term / Pow
| Pow

^ Pow : Factor ^ Pow
| Factor

left associative

left associative

right associative



Are we finished?
input: 2-3-4

expr

expr <MINUS> Term

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Factor
: Term / Factor
| Factor

() Factor : (Expr)
| NUM

Errror!



Are we finished?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Factor
: Term / Factor
| Factor

() Factor : (Expr)
| NUM

Cannot derive
this parse tree!



Are we finished?
input: 2-3-4

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Factor
: Term / Factor
| Factor

() Factor : (Expr)
| NUM

expr

expr <MINUS>

<MINUS>expr term

term

<NUM, 3>factor

factor <NUM, 4>

term

factor

<NUM, 2>



Are we finished?
input: 2-3-4

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Factor
: Term / Factor
| Factor

() Factor : (Expr)
| NUM

expr

expr <MINUS>

<MINUS>expr expr

term

<NUM, 3>

term

factor factor

<NUM, 4>

term

factor

<NUM, 2>

This parse
tree works!



How are parsers implemented?

• Many different ways: read chapter 3 in EAC

• Most likely you can use a parser generator
• write production rules and tokens in a DSL or decorator
• generator automatically creates a parser for you



Parsing actions

• Each production rule gets an action.

• actions are executed in a post-order traversal

• actions can return a value to their parent
• actions can assume their children have executed

• Sometimes called “ad hoc syntax-directed translation”
• Chapter 4 of EAC



Building an interpreter

• Consider the production rules for expressions:



Building an interpreter

Operator Name Productions Action

+,- Expr : Expr + Term
| Expr - Term
| Term

{return e[0] + e[2]}
{return e[0] - e[2]}
{return e[0]}

*,/ Term : Term * Factor
: Term / Factor
| Factor

{return e[0] * e[2]}
{return e[0] / e[2]}
{return e[0]}

() Factor : ( Expr )
| NUM

{return e[1]}
{return int(e[0])}

Consider a struct e that contains elements for each of the children



Next week

• Homework overview

• Implementing a parser in PLY
• Implementing a simple interpreter

• Parsing regular expressions with derivatives

• Have a good weekend!


