
CSE211: Compiler Design 
Oct. 6, 2020

• Topic: Parsing Overview 

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
printf(““);
return 0;
}



Announcements:

• Moving Homework due dates back one week (more time to work on 
homework after module is finished)

• Notes will include a reference to EAC

• Link to reserve is up

• How to watch YuJa recordings
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A Simple Language

• ARTICLE
• NOUN
• VERB
• ADJECTIVE
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Microsoft}

ARTICLE ADJECTIVE? NOUN VERB

The Purple Dog Crashed



Goals in this module

• Understand the architecture of a modern parser (tokenizing and parsing)

• Understand the language of tokens (regular expressions) and parsers 
(context-free grammars)

• How to design CFG production rules so avoid ambiguity and set precedence 
and associativity.

• Learn how to parse using a classic parser generator (Lex and Yacc) for a 
simple programming language



Goals in this module

• We will NOT discuss parsing algorithms for CFGs. It is a deep dark 
hole. If you are interested, you can do this for a paper assignment.

• This module should provide you with the background to implement 
simple compilers. It will make you very popular with future colleagues 
who are scared of compilers. 

• These topics are typically covered in more depth in an undergrad 
course (e.g. formal properties of regular expressions, parsing 
algorithms).
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High-level parser

ParserInput

A string Reject

Accept

What happens 
here?

structured data 
(e.g. AST)

continue to the rest
of compilation

The Purple Dog Crashed
ARTICLE ADJECTIVE? NOUN VERB
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Parser architecture

First level of 
abstraction.

Transforms a string of 
characters into a string

of tokens

Second level:
transforms a string 

of tokens in a tree of 
tokens.

Language:
Regular Expressions 

(REs)

Language:
Context-Free Grammars 
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Scanner

• List of tokens: 
• e.g. {NOUN, ARTICLE, ADJECTIVE, VERB}



Scanner

My Microsoft Computer Crashed
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My Microsoft Computer Crashed
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Scanner



Scanner

My Microsoft Computer Crashed

(ARTICLE, my) (ADJECTIVE, Microsoft) (NOUN, Computer) (VERB, Crashed)

Lexeme: (TOKEN, value) 

Scanner
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Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘) 
(NUMBER, 5) 
(PLUS, +) 
(NUMBER, 4) 
(RPAREN, ‘)’) 
(TIMES, *) 
(NUMBER, 3)

Some choices are more obvious!

(PAREN, ‘(‘) 
(NUMBER, 5) 
(PLUS, +) 
(NUMBER, 4) 
(PAREN, ‘)’) 
(TIMES, *) 
(NUMBER, 3)
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Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}



Regular Expressions

• Lots of literature!
• Simplest grammar in the 

Chomsky language
hierarchy

• abstract machine definition 
(finite automata) 

• Many implementations (e.g.
Python standard library)

image source: wikipedia



Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the

character ‘x’

Examples: (demo)
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Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and 
matches the strings of RE x concatenated with the strings of 
RE y
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Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches 
the strings of RE x or the strings of RE y

Examples (demo)



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the 
strings of RE x repeated 0 or more times

Examples (demo)



Regular Expressions

• Use ()’s to force precedence!

• Without ()’s, what is the precedence of concatenation, union, and 
star?
• What are some experiments we can do?



Regular Expressions

• Use ()’s to force precedence!

• Without ()’s, what is the precedence of concatenation, union, and 
star?

• star > concatenation > union



Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)



Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• NUM = (-|\+)?[0-9]+(\.[0-9]+)?

What about C-style IDs?



Scanner Questions?

• A scanner splits a string into lexemes

• Tokens are defined using regular expressions

• Regular expressions are good for matching operators, parenthesis, variable 
names, numbers, key words etc.

Parser

Scanner 
(Lexer)

(Tokenizer)
Parser



Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?
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Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

• NUM
• NUM PLUS NUM
• NUM TIMES NUM
• NUM PLUS NUM TIMES NUM
• NUM PLUS NUM TIMES NUM
• NUM (BIN_OP NUM)*



Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free 

grammars

• Naturally create tree like structures

• More powerful than regular 
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=5036988



Parser

• <production name> : <token>*
• Example:

sentence: ARTICLE NOUN VERB

• <production name> : <token>* | <token>*
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB 

| ARTICLE NOUN VERB



Parser

• Production rules can reference other production rules

sentence: adjective_sentence
| non_adjective_sentence

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

non_adjective_sentence: ARTICLE NOUN VERB 



Parser

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB



Parser

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
| <empty>



Next week

• Production rules for expressions
• parse trees
• associativity
• ambiguous grammars

• Homework is released next class:
• Have a look, but we will cover PLY and parsing with derivatives next Tuesday

• See you on Thursday!


