
CSE211: Compiler Design
Oct. 6, 2020

• Topic: Parsing Overview

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements:

• Moving Homework due dates back one week (more time to work on
homework after module is finished)

• Notes will include a reference to EAC

• Link to reserve is up

• How to watch YuJa recordings

CSE211: Compiler Design
Oct. 6, 2020

• Topic: Parsing Overview

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
printf(““);
return 0;
}

Parsing is the first step in a compiler

• How do we parse language?

Parsing is the first step in a compiler

• How do we parse language?

The dog ran across the park

Parsing is the first step in a compiler

• How do we parse language?

The dog ran across the park

ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN

Parsing is the first step in a compiler

• How do we parse language?

The dog ran across the park

ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN

Parsing is the first step in a compiler

• How do we parse language?

The dog ran across the park

ARTICLE NOUN VERB PREPOSITION ARTICLE NOUN

A Simple Language

• ARTICLE
• NOUN
• VERB
• ADJECTIVE

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Microsoft}

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Microsoft}

ARTICLE NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Microsoft}

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Microsoft}

ARTICLE ADJECTIVE? NOUN VERB

My Microsoft Computer Crashed

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Microsoft}

ARTICLE ADJECTIVE? NOUN VERB

The Purple Dog Crashed

Goals in this module

• Understand the architecture of a modern parser (tokenizing and parsing)

• Understand the language of tokens (regular expressions) and parsers
(context-free grammars)

• How to design CFG production rules so avoid ambiguity and set precedence
and associativity.

• Learn how to parse using a classic parser generator (Lex and Yacc) for a
simple programming language

Goals in this module

• We will NOT discuss parsing algorithms for CFGs. It is a deep dark
hole. If you are interested, you can do this for a paper assignment.

• This module should provide you with the background to implement
simple compilers. It will make you very popular with future colleagues
who are scared of compilers.

• These topics are typically covered in more depth in an undergrad
course (e.g. formal properties of regular expressions, parsing
algorithms).

High-level parser

Parser

High-level parser

ParserInput

A string

High-level parser

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

High-level parser

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

The input string is
in the language L

The input string is
NOT in the
language L

High-level parser

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

What happens
here?

structured data
(e.g. AST)

continue to the rest
of compilation

High-level parser

ParserInput

A string Reject

Accept

What happens
here?

structured data
(e.g. AST)

continue to the rest
of compilation

ARTICLE ADJECTIVE? NOUN VERB
My Microsoft Computer Computer

High-level parser

ParserInput

A string Reject

Accept

What happens
here?

structured data
(e.g. AST)

continue to the rest
of compilation

The Purple Dog Crashed
ARTICLE ADJECTIVE? NOUN VERB

Parser architecture
Parser

Scanner
(Lexer)

(Tokenizer)
Parser

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Scanner

• List of tokens:
• e.g. {NOUN, ARTICLE, ADJECTIVE, VERB}

Scanner

My Microsoft Computer Crashed

Scanner

My Microsoft Computer Crashed

(ARTICLE, my) (ADJECTIVE, Microsoft) (NOUN, Computer) (VERB, Crashed)

Scanner

Scanner

My Microsoft Computer Crashed

(ARTICLE, my) (ADJECTIVE, Microsoft) (NOUN, Computer) (VERB, Crashed)

Lexeme: (TOKEN, value)

Scanner

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

(LPAREN, ‘(‘)
(NUMBER, 5)
(OP, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(OP, *)
(NUMBER, 3)

You can generalize tokens

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

(LPAREN, ‘(‘)
(FIVE, 5)
(PLUS, +)
(FOUR, 4)
(RPAREN, ‘)’)
(TIMES, *)
(THREE, 3)

You can make tokens more specific

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

Some choices are more obvious!

(PAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(PAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

Defining tokens

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Regular Expressions

• Lots of literature!
• Simplest grammar in the

Chomsky language
hierarchy

• abstract machine definition
(finite automata)

• Many implementations (e.g.
Python standard library)

image source: wikipedia

Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the

character ‘x’

Examples: (demo)

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and
matches the strings of RE x concatenated with the strings of
RE y

Examples (demo)

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches
the strings of RE x or the strings of RE y

Examples (demo)

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the
strings of RE x repeated 0 or more times

Examples (demo)

Regular Expressions

• Use ()’s to force precedence!

• Without ()’s, what is the precedence of concatenation, union, and
star?
• What are some experiments we can do?

Regular Expressions

• Use ()’s to force precedence!

• Without ()’s, what is the precedence of concatenation, union, and
star?

• star > concatenation > union

Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)

Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• NUM = (-|\+)?[0-9]+(\.[0-9]+)?

What about C-style IDs?

Scanner Questions?

• A scanner splits a string into lexemes

• Tokens are defined using regular expressions

• Regular expressions are good for matching operators, parenthesis, variable
names, numbers, key words etc.

Parser

Scanner
(Lexer)

(Tokenizer)
Parser

Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

• NUM

Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

• NUM
• NUM PLUS NUM

Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

• NUM
• NUM BIN_OP NUM

Parser

• Sentence:
• ARTICLE ADJECTIVE? NOUN VERB

• What about a mathematical sentence (expression)?

• NUM
• NUM PLUS NUM
• NUM TIMES NUM
• NUM PLUS NUM TIMES NUM
• NUM PLUS NUM TIMES NUM
• NUM (BIN_OP NUM)*

Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free

grammars

• Naturally create tree like structures

• More powerful than regular
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5036988

Parser

• <production name> : <token>*
• Example:

sentence: ARTICLE NOUN VERB

• <production name> : <token>* | <token>*
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB

| ARTICLE NOUN VERB

Parser

• Production rules can reference other production rules

sentence: adjective_sentence
| non_adjective_sentence

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

non_adjective_sentence: ARTICLE NOUN VERB

Parser

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

Parser

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
| <empty>

Next week

• Production rules for expressions
• parse trees
• associativity
• ambiguous grammars

• Homework is released next class:
• Have a look, but we will cover PLY and parsing with derivatives next Tuesday

• See you on Thursday!

