CSE211: Compiler Design

 Oct. 29, 2020- Topic: Finish flow analysis.

SSA form, producing SSA and optimization examples using SSA

- Questions:

What did you think of using PLY in the homework? Pros, cons?

```
3:
    %4 = tail call i32 @_Z14first_functionv(), !dbg !19
    call void @llvm.dbg.value(metadata i32 %4, metadata !14, metadata
    br label %7, !dbg !21
5:
    %6 = tail call i32 @_z15second_functionv(), !dbg !22
    call void @llvm.dbg.value(metadata i32 %6, metadata !14, metadata
    br label %7
7:
    %8 = phi i32 [ %4, %3 ], [ %6, %5 ], !dbg !24
    call void @llvm.dbg.value(metadata i32 %8, metadata !14, metadata
    ret i32 %8, !dbg !25
}
```


Announcements

- Homework 1 is due today
- I will be copying from your submission folder first thing tomorrow morning
- I will try to grade within 2 weeks
- Module 3 is pushed back 1 week
- Midterm will be released in 1 week: given on Nov. 5, due in 1 week: Nov. 12.

CSE211: Compiler Design

 Oct. 29, 2020- Topic: Finish flow analysis.

SSA form, producing SSA and optimization examples using SSA

- Questions:

What did you think of using PLY in the homework? Pros, cons?

```
3:
    %4 = tail call i32 @_Z14first_functionv(), !dbg !19
    call void @llvm.dbg.value(metadata i32 %4, metadata !14, metadata
    br label %7, !dbg !21
5:
    %6 = tail call i32 @_z15second_functionv(), !dbg !22
    call void @llvm.dbg.value(metadata i32 %6, metadata !14, metadata
    br label %7
7:
    %8 = phi i32 [ %4, %3 ], [ %6, %5 ], !dbg !24
    call void @llvm.dbg.value(metadata i32 %8, metadata !14, metadata
    ret i32 %8, !dbg !25
}
```


Dominance

- dominators of node n are nodes for which every path from the start state, must be visited before reaching n

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{\text {pin preds(n) }} \operatorname{Dom}(p)\right)
$$

Live variable analysis in the CFG:

- A variable v is live in a node n if there exists some path in which the v is accessed (without being overwritten in the meantime)

$$
\operatorname{LiveOut}(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being potentially overwritten.

Consider:

$$
s=a[x]+1 ;
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
s=a[x]+1 ;
$$

UEVar needs to assume $a[x]$ is any memory location that it cannot prove non-aliasing

$$
\text { LiveOut }(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
\mathrm{a}[\mathrm{x}]=\mathrm{s}+1 ;
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:
$a[x]=s+1$;
VarKill also needs to know about aliasing

Sound vs. Complete

- Sound: results might be false, but facts are never missed. i.e. if variable x is found to be live, it might not be. But there will never exist a variable y that is live, but not claimed to be.
- Complete: claims are always true, but true facts may be missed. i.e. if variable x is found to be live, then it definitely is. If variable y is NOT claimed to be live, then it still may be.

$$
\operatorname{LiveOut}(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

How to instantiate the UEVar and VarKill for sound/complete analysis w.r.t. memory?
$\mathrm{s}=\mathrm{a}[\mathrm{x}]+1$;

$$
\mathrm{a}[\mathrm{x}]=\mathrm{s}+1 ;
$$

Live variable limitations

Imprecision can come from CFG construction:
consider:
br $1<0$, dead_branch, alive_branch

Live variable limitations

Imprecision can come from CFG construction:
consider:
br $1<0$, dead_branch, alive_branch
could come from arguments, etc.

Live variable limitations

Imprecision can come from CFG construction:
consider first class labels (or functions):
br label_reg
need to branch to all possible
where label_reg is a register that contains a register basic blocks!

The Data Flow Framework

The Data Flow Framework

```
LiveOut(n) = U S in succ(n)
```


The Data Flow Framework

```
LiveOut(n) = U S in succ(n)
```

$$
f(x)=O P_{v \text { in }(\text { succ } / \text { preds })} c_{0}(v) o p_{1}\left(f(v) o p_{2} c_{2}(v)\right)
$$

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

An expression e is "available" at a basic block b_{x} if for all paths to b_{x}, e is evaluated and none of its arguments are overwritten

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$
Forward Flow

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$
intersection implies "must" analysis

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \operatorname{ExprKill}(p))$

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions that are evaluated AND operands are not redefined

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup($ AvailExpr $(p) \cap \overline{\operatorname{ExprKill}(p)})$

AvailExpr(p) is any expression that is available at p

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined in p

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \operatorname{ExprKill}(p))$

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup($ AntOut $(s) \cap \overline{\operatorname{ExprKill}(s)})$

An expression e is "anticipable" at a basic block b_{x} if for all paths that leave b_{x}, e is evaluated

Anticipable Expressions

AntOut $(n)=\cap_{\text {sinsucc }} U E E x p r(s) \cup($ AntOut(s) $\cap \overline{\text { ExprKill(s) })}$

Backwards flow

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} U E \operatorname{Expr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$
"must" analysis

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions that are computed in p before operands are overwritten.

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }}$ s.UEExpr \cup (s.AntOut \cap s. ExprKill)

Application: you can hoist AntOut expressions to compute as early as possible

Reaching Definitions

- Read about this in 9.2.4
- trace variable usages in block b to possible definitions
- can be used in alias analysis

Static Single-Assignment Form (SSA)

Intermediate representations

-What have we seen so far?

- 3 address code
- AST
- data-dependency graphs
- control flow graphs
- At a high-level:
- 3 address code is good for data-flow reasoning
- control flow graphs are good for... control flow reasoning

What we want: an IR that can reasonably capture both control and data flow

Static Single-Assignment Form (SSA)

- Every variable is defined and written to once
- We have seen this in local value numbering!
- Control flow is captured using ϕ instructions

ϕ instructions

- Example: how to convert this code into SSA?

```
int x;
if (<some_condition>) {
    x = 5;
}
else {
    x = 7;
}
print(x)
```


ϕ instructions

- Example: how to convert this code into SSA?

```
int x;
if (<some_condition>) {
    Start with numbering
    x = 5;
}
else {
    x = 7;
}
print(x)
```


ϕ instructions

- Example: how to convert this code into SSA?

```
int x;
if (<some_condition>) {
    Start with numbering
    x0 = 5;
}
else {
    x1 = 7;
}
print(x)
```


ϕ instructions

- Example: how to convert this code into SSA?

```
int x;
if (<some_condition>) {
    Start with numbering
    x0 = 5;
}
else {
    x1 = 7;
}
print(*)
    What here?
```


ϕ instructions

- Example: how to convert this code into SSA?

ϕ instructions

- Example: how to convert this code?
number the variables

```
int x;
if (<some_condition>) {
    x0 = 5;
}
else {
    x1 = 7;
}
print(x)
```


ϕ instructions

- Example: how to convert this code?
number the variables

```
int x;
if (<some_condition>) {
    x0 = 5;
}
else {
    x1 = 7;
}
print(x)
```

ϕ instructions

- LLVM example

ϕ instructions

- $\mathrm{x}_{\mathrm{n}}=\phi\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots\right) ;$
- selects one of the values depending on the previously executed basic block. Implementations will define how the value is selected:
- LLVM: couples values with labels
- EAC book: uses left-to-right ordering of parents in visual CFG

ϕ instructions

- $\mathrm{x}_{\mathrm{n}}=\phi\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots\right)$;
- variables that haven't been assigned can appear (but they will not be evaluated)

```
    x}=1
    if (...) goto end_loop;
loop:
    \mp@subsup{x}{1}{}}=\phi(\mp@subsup{\textrm{x}}{0}{},\mp@subsup{\textrm{x}}{2}{})
    \mp@subsup{x}{2}{}}=\mp@subsup{\textrm{x}}{1}{}+1
    if (...) goto loop;
end_loop:
    \mp@subsup{x}{3}{}}=\phi(\mp@subsup{\textrm{x}}{0}{\prime},\mp@subsup{\textrm{x}}{2}{})
```


ϕ instructions

- $\mathrm{x}_{\mathrm{n}}=\phi\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots\right)$;
- variables that haven't been assigned can appear (but they will not be evaluated)

```
    x}=1
    if (...) goto end_loop;
loop:
    \mp@subsup{x}{1}{}}=\phi(\mp@subsup{\textrm{x}}{0}{},\mp@subsup{\textrm{x}}{2}{})
    x
    if (...) goto loop;
end_loop:
    \mp@subsup{x}{3}{}}=\phi(\mp@subsup{\textrm{x}}{0}{\prime},\mp@subsup{\textrm{x}}{2}{})
```


Conversion into SSA

Different algorithms depending on how many ϕ instructions

The fewer ϕ instructions, the more efficient analysis will be

Maximal SSA

Straightforward:

- For each variable, for each basic block: insert a ϕ instruction with placeholders for arguments
- local numbering for each variable using a global counter
- instantiate ϕ arguments

Maximal SSA

Example

```
x = 1;
y = 2;
if (<condition>) {
    x = y;
}
else {
    x = 6;
    y = 100;
}
print(x)
```


Maximal SSA

Example

```
x = 1;
y = 2;
if (<condition>) {
    x = y;
}
else {
    x = 6;
    y = 100;
}
print(x)
```

Insert ϕ with argument
placeholders

```
x = 1;
y = 2;
if (<condition>) {
    x = \phi(...);
    y = \phi(...);
    x = y;
}
else {
    x = \phi(...);
    y = \phi(...);
    x = 6;
    y = 100;
}
x = \phi(...);
y = \phi(...);
print(x)
```


Rename variables

Maximal SSA

Example

```
x = 1;
y = 2;
if (<condition>) {
    x = y;
}
else {
    x = 6;
    y = 100;
}
print(x)
```

Insert ϕ with argument placeholders

```
x = 1;
y = 2;
if (<condition>) {
    x = \phi(...);
    y = \phi(...);
    x = y;
}
else {
    x = \phi(...);
    y = \phi(...);
    x = 6;
    y = 100;
}
x = \phi(...);
y = \phi(...);
print(x)
```

iterate through basic blocks with a global counter

```
x0 = 1;
y1 = 2;
if (<condition>) {
    x3 = \phi(...);
    y4 = ф(...);
    x5 = y4;
}
else {
    x6 = \phi(...);
    y7 = \phi(...);
    x8 = 6;
    y9 = 100;
}
x10 = \phi(...);
y11 = \phi(...);
print(x10)
```


Rename variables

Maximal SSA

Example

```
x = 1;
y = 2;
if (<condition>) {
    x = y;
}
else {
    x = 6;
    y = 100;
}
print(x)
```

Insert ϕ with argument placeholders

```
x = 1;
y = 2;
if (<condition>) {
    x = \phi(...);
    y = \phi(...);
    x = y;
}
else {
    x = \phi(...);
    y = \phi(...);
    x = 6;
    y = 100;
}
x = \phi(...);
y = \phi(...);
print(x)
```

iterate through basic
blocks with a global counter

```
x0 = 1;
y1 = 2;
if (<condition>) {
    x3 = \phi(...);
    y4 = \phi(...);
    x5 = y4;
}
else {
    x6 = \phi(...);
    y7 = \phi(...);
    x8 = 6;
    y9 = 100;
}
x10 = \phi(...);
y11 = \phi(...);
print(x10)
```

fill in ϕ arguments by considering CFG

```
x0 = 1;
y1 = 2;
if (<condition>) {
    x3 = \phi(x0);
    y4 = \phi(y1);
    x5 = y4;
}
else {
    x6 = \phi(x0);
    y7 = \phi(y1);
    x8 = 6;
    y9 = 100;
}
x10 = \phi(x5,x8);
y11 = \phi(y4,y9);
print(x10)
```


More efficient translation?

Example

```
x = 1;
y = 2;
if (...)
    x = y;
}
else {
    x = 6;
    y = 100;
}
print(x)
```

maximal SSA

```
x0 = 1;
y1 = 2;
if (...) {
    x3 = \phi(x0);
    y4 = \phi(y1);
    x5 = y4;
}
else {
    x6 = \phi(x0);
    y7 = \phi(y1);
    x8 = 6;
    y9 = 100;
}
x10 = \phi(x5,x8);
y11 = \phi(y4,y9);
print(x10)
```

Optimized?

```
x0 = 1;
y1 = 2;
if (...) {
        x5 = y1;
}
else {
    x8 = 6;
    y9 = 100;
}
x10 = \phi(x5,x8);
y11 = \phi(y1,y9);
print(x10)
```


More efficient translation?

Example

```
x = 1;
y = 2;
if (...)
    x = y;
}
else {
    x = 6;
    y = 100;
}
print(x)
```

maximal SSA

```
x0 = 1;
y1 = 2;
if (...) {
    x3 = \phi(x0);
    y4 = \phi(y1);
    x5 = y4;
}
else {
    x6 = \phi(x0);
    y7 = \phi(y1);
    x8 = 6;
    y9 = 100;
}
x10 = \phi(x5,x8);
y11 = \phi(y4,y9);
print(x10)
```

Hand Optimized SSA

```
x0 = 1;
y1 = 2;
if (...) {
    x5 = y1;
}
else {
    x8 = 6;
    y9 = 100;
}
x10 = \phi(x5,x8);
y11 = \phi(y1,y9);
print(x10)
```


A more optimal approach for ϕ placements

-When is a ϕ needed?

A more optimal approach for ϕ placements

- When is a ϕ needed?
variable
assignments
in different
branches

A more optimal approach for ϕ placements

- When is a ϕ needed?
variable
assignments
in different
branches

A more optimal approach for ϕ placements

-When is a ϕ needed?

- More specific question: given a block i, find the set of blocks B which may need a ϕ instruction for a definition in block i.
$\mathrm{x}=0$; what set of blocks need a ϕ node for variable x ?

A more optimal approach for ϕ placements

-When is a ϕ needed?

- More specific question: given a block i, find the set of blocks B which may need a ϕ instruction for a definition in block i.
blocki $x=0$; what set of blocks need a ϕ node for variable x ?
some path
blockj print(x); Does block j need a ϕ for variable x ?

A more optimal approach for ϕ placements

-When is a ϕ needed?

- More specific question: given a block i, find the set of blocks B which may need a ϕ instruction for a definition (of variable v) in block i.
blocki $\mathrm{x}=0$; what set of blocks need a ϕ node for variable x ?
some path
block j \quad print(x); Does block j need a ϕ for variable x ? \quad is block j dominated by block i?
If so, then no ϕ node is needed

A more optimal approach for ϕ placements

- say j is dominated by i . Thus, no ϕ node is needed in block j
blocki $x=0$; what set of blocks need a ϕ node for variable x ?
some path
blockj \quad print(x);

A more optimal approach for ϕ placements

- say j is dominated by i . Thus, no ϕ node is needed in block j

A more optimal approach for ϕ placements

- say jis dominated by i. Thus, no ϕ node is needed in block j

Dominance Frontier

- For a block i, the set of blocks B in i's dominance frontier lie just "outside" the blocks that i dominates.

Dominance Frontier

- Efficient algorithm for computing in EAC section 9.3.2 using a dominator tree. Please read when you get the chance!

Dominance Frontier

Candidates are join points: B1, B7, B3

Node	Dominator Frontier	
B0	\{\}	first
B1	B1	fourth
B2	B3	third
B3		
B4		
B5	B3	second
B6	B7	
B7		
B8		

Dominance Frontier

Candidates are join points: B1, B7, B3

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

Dominance Frontier

Candidates are join points: B1, B7, B3

Node	Dominator Frontier	Use strict dominance (nodes don't dominate themselves)
B0	\{\}	
B1	B1	
B2	B3	
B3	B1	
B4	\{\}	
B5	B3	
B6	B7	
B7	B3	
B8	B7	

Variable Assignment-to-Block Map

B0: i = ...;
B1: a = ...;
c = ...;
br ... B2, B5;
B2: b = ...;
c = ...;
d = ...;
B3: $y=\ldots$;
z = ...;
i = ...;
br ... B1, B4;
B4: return;

```
B5: a = ...;
    d = ...;
    br ... B6, B8;
```

B6: d = ...;
B7: b = ...;
B8: $\mathrm{c}=\ldots$;
br B7;

B0: i = ...;

B1: a = ...;
c = ...;
br ... B2, B5;
B2: b = ...;
c = ...;
d = ...;
B3: $y=\ldots$;
z = ...;
i = ...;
br ... B1, B4;
B4: return;

```
B5: a = ...;
    d = ...;
    br ... B6, B8;
```

B6: d = ...;
B7: b = ...;
B8: $\mathrm{c}=\ldots$;
br B7;

$$
\begin{aligned}
& \mathrm{B} 0: \mathrm{i}=\ldots ; \\
& \mathrm{B} 1: \mathrm{a}=\ldots ; \\
& \mathrm{c}=\ldots ; \\
& \mathrm{br} \ldots \mathrm{~B} 2, \mathrm{~B} 5 ;
\end{aligned}
$$

B2: b = ...;
c = ...;
d = ...;

$$
\begin{aligned}
\mathrm{B} 5: & \mathrm{a}=\ldots ; \\
& \mathrm{d}=\ldots ; \\
& \mathrm{br} \ldots \mathrm{~B} 6, \mathrm{~B} 8 ;
\end{aligned}
$$

B6: d = ...;
B7: b = ...;
B8: c = ...;
br B7;
local variables can be chopped

Var	a	b	c	d	i	y	z
Blocks	$B 1, B 5$	$B 2, B 7$	$B 1, B 2, B 8$	$B 2, B 5, B 6$	$B 0, B 3$	$B 3$	$B 3$

B5: a = ...;
B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B6: d = ...;
B7: b = ...;
B7: b = ...;
B8: c = ...;
B8: c = ...;
br B7;
br B7;

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

Var	a	b	c	d	i
Blocks	$B 1, B 5$	$B 2, B 7$	$B 1, B 2, B 8$	$B 2, B 5, B 6$	$B 0, B 3$

B5: a = ...;
B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: c = ...;
br B7;

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

for each block b:
ϕ is needed in the DF of b
B5: a = ...;
B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: c = ...;
br B7;

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

for each block b:
ϕ is needed in the DF of b
B5: a = ...;
B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: c = ...;
br B7;
br ... B2, B5;
B2: b = ...;
c = ...;
d = ...;
B3: y = ...;
z = ...;
i = ...;
br ... B1, B4;

$\begin{aligned} \mathrm{B} 5: & \mathrm{a}=\ldots ; \\ & \mathrm{d}=\ldots \text { } \\ & \text { br } \ldots \text { B6, } \mathrm{B} 8 ; \end{aligned}$	Node	Dominator Frontier
	B0	\{\}
d	B1	B1
B7: b = ...;	B2	B3
B8: $\mathrm{c}=$	B3	B1
br B7;	B4	\{\}
	B5	B3
	B6	B7
	B7	B3
	B8	B7

B4: return;
for each block b:
ϕ is needed in the DF of b
B5: a = ...;
B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: c = ...;
br B7;
br ... B2, B5;
B2: b = ...;
c = ...;
d = ...;
B3: y = ...;
z = ...;
i = ...;
br ... B1, B4;

$\begin{aligned} \mathrm{B} 5: & \mathrm{a}=\ldots ; \\ & \mathrm{d}=\ldots \text { } \\ & \text { br } \ldots \text { B6, } \mathrm{B} 8 ; \end{aligned}$	Node	Dominator Frontier
	B0	\{\}
d	B1	B1
B7: b = ...;	B2	B3
B8: $\mathrm{c}=$	B3	B1
br B7;	B4	\{\}
	B5	B3
	B6	B7
	B7	B3
	B8	B7

B4: return;
for each block b:
ϕ is needed in the DF of b

```
B0: i = ...;
B1: a = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
```

B2: b = ...;
c = ...;
d = ...;
B3: $\mathrm{a}=\phi(\ldots)$;
y = ...;
z = ...;
i = ...;
br ... B1, B4;

B4: return;

```
B5: a = ...;
    d = ...;
    br ... B6, B8;
```

B6: d = ...;
B7: b = ...;
B8: C = ...;
br B7;

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

ϕ is needed in the DF of b

```
B0: i = ...;
B1: a = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
```

B2: b = ...;
c = ...;
d = ...;
B3: a = $\phi(. .$.$) ;$
y = ...;
z = ...;
i = ...;
br ... B1, B4;

B4: return;

```
B5: a = ...;
    d = ...;
    br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: c = ...;
    br B7;
\begin{tabular}{|l|l|}
\hline Node & \begin{tabular}{l} 
Dominator \\
Frontier
\end{tabular} \\
\hline B0 & \(\}\) \\
\hline B1 & B1 \\
\hline B2 & B3 \\
\hline B3 & B1 \\
\hline B4 & \(\}\) \\
\hline B5 & B3 \\
\hline B6 & B7 \\
\hline B7 & B3 \\
\hline B8 & B7 \\
\hline
\end{tabular}
```


Var

Blocks
\square
B1,B5

We've now added new definitions of 'a'!

```
B0: i = ...;
B1: \(\mathrm{a}=\phi(. .\).\() ;\)
    a = ...;
    c = ...;
    br ... B2, B5;
```

B2: b = ...;
c = ...;
d = ...;
B3: $a=\phi(\ldots) ;$
y = ...;
z = ...;
i = ...;
br ... B1, B4;

```
B5: a = ...;
    d = ...;
    br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: C = ...;
    br B7;
\begin{tabular}{|l|l|}
\hline Node & \begin{tabular}{l} 
Dominator \\
Frontier
\end{tabular} \\
\hline B0 & \(\}\) \\
\hline B1 & B1 \\
\hline B2 & B3 \\
\hline B3 & B1 \\
\hline B4 & \(\}\) \\
\hline B5 & B3 \\
\hline B6 & B7 \\
\hline B7 & B3 \\
\hline B8 & B7 \\
\hline
\end{tabular}
```

B4: return;

Var	a
Blocks	B1,B5,B1,B3

We've now added new definitions of 'a'!

```
B0: i = ...;
B1: \(\mathrm{a}=\phi(\ldots) ;\)
    a = ...;
    c = ...;
    br ... B2, B5;
```

B2: b = ...;
c = ...;
d = ...;
B3: $a=\phi(\ldots) ;$
y = ...;
z = ...;
i = ...;
br ... B1, B4;

```
B5: a = ...;
    d = ...;
    br ... B6, B8;
B6: d = ...;
B7: b = ...;
B8: c = ...;
    br B7;
\begin{tabular}{|l|l|}
\hline Node & \begin{tabular}{l} 
Dominator \\
Frontier
\end{tabular} \\
\hline B0 & \(\}\) \\
\hline B1 & B1 \\
\hline B2 & B3 \\
\hline B3 & B1 \\
\hline B4 & \(\}\) \\
\hline B5 & B3 \\
\hline B6 & B7 \\
\hline B7 & B3 \\
\hline B8 & B7 \\
\hline
\end{tabular}
```

B4: return;

Var	\mathbf{a}
Blocks	$B 1, B 5, B 3$

We've now added new definitions of 'a'!

```
B0: i = ...;
B1: a = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: a = \phi(...);
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
```

```
B5: a = ...;
```

B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B6: d = ...;
B7: b = ...;
B7: b = ...;
B8: c = ...;
B8: c = ...;
br B7;

```
    br B7;
```

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

B4: return;

Var	a	b
Blocks	$B 1, B 5, B 3$	$B 2, B 7$

```
B0: i = ...;
B1: a = \(\phi(. .\).\() ;\)
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: \(\mathrm{a}=\phi(\ldots) ;\)
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
```

```
B5: a = ...;
```

B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B6: d = ...;
B7: b = ...;
B7: b = ...;
B8: c = ...;
B8: c = ...;
br B7;

```
    br B7;
```

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

B4: return;

Var	a	b
Blocks	$B 1, B 5, B 3$	$B 2, B 7$

```
B0: i = ...;
B1: a = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: a = \phi(...);
    b = \phi(...);
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
```

```
B5: a = ...;
```

B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B6: d = ...;
B7: b =;
B7: b =;
B8: C = ...;
B8: C = ...;
br B7;

```
    br B7;
```

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

B4: return;

Var	a	b
Blocks	$B 1, B 5, B 3$	$B 2, B 7$

```
B0: i = ...;
B1: a = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: a = \phi(...);
    b = \phi(...);
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
```

```
B5: a = ...;
```

B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B6: d = ...;
B7: b =;
B7: b =;
B8: C = ...;
B8: C = ...;
br B7;

```
    br B7;
```

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

B4: return;

Var	a	b
Blocks	$B 1, B 5, B 3$	$B 2, B 7$

```
B0: i = ...;
B1: a = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: a = \phi(...);
    b = \phi(...);
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
```

```
B5: a = ...;
```

B5: a = ...;
d = ...;
d = ...;
br ... B6, B8;
br ... B6, B8;
B6: d = ...;
B6: d = ...;
B7: b = ...;
B7: b = ...;
B8: C = ...;
B8: C = ...;
br B7;

```
    br B7;
```

Node	Dominator Frontier
B0	$\}$
B1	B1
B2	B3
B3	B1
B4	$\}$
B5	B3
B6	B7
B7	B3
B8	B7

B4: return;

Var	a	b
Blocks	$B 1, B 5, B 3$	$B 2, B 7, B 3$

```
B0: i = ...;
B1: a = \phi(...);
    b = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: a = \phi(...);
    b = \phi(...);
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
B4: return;
\begin{tabular}{|l|l|l|}
\hline Var & a & b \\
\hline Blocks & \(B 1, B 5, B 3\) & \(B 2, B 7, B 3\) \\
\hline
\end{tabular}
```

```
B0: i = ...;
B1: a = \phi(...);
    b = \phi(...);
    a = ...;
    c = ...;
    br ... B2, B5;
B2: b = ...;
    c = ...;
    d = ...;
B3: a = \phi(...);
    b = \phi(...);
    y = ...;
    z = ...;
    i = ...;
    br ... B1, B4;
B4: return;
\begin{tabular}{|l|l|l|}
\hline Var & a & b \\
\hline Blocks & \(B 1, B 5, B 3\) & \(B 2, B 7, B 3\) \\
\hline
\end{tabular}
```


Next lecture

- Variable renaming with pruned ϕ^{\prime} s
- Global Constant Propagation using SSA

