
CSE211: Compiler Design
Oct. 27, 2020

• Topic: Data Flow Analysis Continued

• Questions:

Questions/comments about
homework 1?

What are some interesting control
flow constructs and how do they look
in a CFG?

Announcements

• Homework 1 is due on Thursday!

• Office Hours are Wednesday from 3 - 4 PM.

• If you need help with homework 1, message me before hand
with a brief summary of your question. I will use this to
schedule and potentially make groups

Announcements

• According to the schedule: the last day of module 2.

• But we need to go over SSA form

• Schedule may get moved back a week. (I know people
are excited for module 3!)

CSE211: Compiler Design
Oct. 27, 2020

• Topic: Data Flow Analysis Continued

• Questions:

Questions/comments about
homework 1?

What are some interesting control
flow constructs and how do they look
in a CFG?

Control Flow Graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;

Control Flow Graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

Control Flow Graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

Interesting CFGs

interesting CFGs

• Exceptions

• Break in a loop

• Switch statement (consider break, no break)

• first class branches (or functions)

Dominance

• a block bx dominates block by iff
every path from the start to block
bx goes through by

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

dominators
b0,b1

dominators
b0,b2

dominators
b0,b3

dominators
b0

• a block bx dominates block by iff
every path from the start to block
bx goes through by

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

a larger example from last lecture

Computing Dominance

• Iterative fixed point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Building intuition behind the math

• This algorithm is vertex centric
• local computations consider only a target node and its immediate neighbors

• At least one node is instantiated with ground truth:
• starting node dominator is itself

• Information flows through the graphs and nodes are updated

For example: Bellman Ford Shortest path

• Root node is initialized to 0
• Every node determines new distances based on incoming distances.
• When distances stop updating, the algorithm is converged

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Forward flow, as updates flow from
parents to children.

How can we optimize the algorithm?

Node Initial I1 I2 I3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

How can we optimize the algorithm?

Node Initial I1 I2 I3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

This can be any order...

How can we optimize the order?

Given this intuition, what ordering would be best?

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Forward flow, as updates flow from
parents to children.

How can we optimize the algorithm?

Node New Order

B0

B1

B2

B3

B4

B5

B6

B7

B8

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node New Order

B0 B0

B1 B1

B2 B2

B3 B5

B4 B6

B5 B8

B6 B7

B7 B3

B8 B4

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node New Order

B0 B0

B1 B1

B2 B2

B3 B5

B4 B6

B5 B8

B6 B7

B7 B3

B8 B4

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node Initial I1

B0 B0

B1 N

B2 N

B5 N

B6 N

B8 N

B7 N

B3 N

B4 N

How can we optimize the algorithm?

Node Initial I1

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4

How can we optimize the algorithm?

Node Initial I1 I2

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node Initial I1 I2

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B8 N B0,B1,B5,B8 ...

B7 N B0,B1,B5,B7 ...

B3 N B0,B1,B3 ...

B4 N B0,B1,B4 ...

Reverse
post-order (rpo),
where parents are visited
first

A quick aside about graph algorithms:

• Does node ordering matter in SSSP?
• Yes! Dijkstra’s algorithm uses a priority queue
• Prioritize nodes with the lowest value

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Traversal order in graph algorithms
is a big research area!

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
px = 5

...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x
px = 5

...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x
px = 5

...
if (z):

y = 6
else:

y = x
print(y)
print(w)

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x

Live variables: ?

p

p

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: y

p

p

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x

//start
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: ?

p

p

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x

//start
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: w

p

p

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x

//start
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: w

p

p

Accessing an uninitialized
variable!

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0

B1

B2

B3

B4

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s

Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2

Backwards flow analysis
because values flow from
successors

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 any variable in UEVar(s)
is live at n

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are not
overwritten in s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are live
at the end of s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are live
at the end of s, and not
overwritten by s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2

LiveOut is a union
rather than an intersection

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Consider the language we use for each:

• Dominance of node bx contains by if:
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))
Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Consider the language we use for each:

• Dominance of node bx contains by if:
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

• Some vs. Every

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))
Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0
Bstart {} {} {}

B0 i {} {}

B1 {} i {}

B2 s {} {}

B3 s,i s,i {}

B4 {} s {}

Bend {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1
Bstart {} {} {}

B0 i {} {}

B1 {} i {}

B2 s {} {}

B3 s,i s,i {}

B4 {} s {}

Bend {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1
Bstart {} {} {} {}

B0 i {} {} i

B1 {} i {} s,i

B2 s {} {} s,i

B3 s,i s,i {} s,i

B4 {} s {} {}

Bend {} {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} {} {}

B0 i {} {} i

B1 {} i {} s,i

B2 s {} {} s,i

B3 s,i s,i {} s,i

B4 {} s {} {}

Bend {} {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} {} {} {}

B0 i {} {} i s,i

B1 {} i {} s,i s,i

B2 s {} {} s,i s,i

B3 s,i s,i {} s,i s,i

B4 {} s {} {} {}

Bend {} {} {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1 LiveOut I2 LiveOut I3
Bstart {} {} {} {} {}

B0 i {} {} i s,i

B1 {} i {} s,i s,i

B2 s {} {} s,i s,i

B3 s,i s,i {} s,i s,i

B4 {} s {} {} {}

Bend {} {} {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1 LiveOut I2 LiveOut I3
Bstart {} {} {} {} {} s

B0 i {} {} i s,i s,i

B1 {} i {} s,i s,i s,i

B2 s {} {} s,i s,i s,i

B3 s,i s,i {} s,i s,i s,i

B4 {} s {} {} {} {}

Bend {} {} {} {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar LiveOut I0 LiveOut I1 LiveOut I2 LiveOut I3
Bstart {} {} {} {} {} s

B0 i {} {} i s,i s,i

B1 {} i {} s,i s,i s,i

B2 s {} {} s,i s,i s,i

B3 s,i s,i {} s,i s,i s,i

B4 {} s {} {} {} {}

Bend {} {} {} {} {} {}

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Bend

Bstart

Node ordering for backwards flow

• Reverse post-order was good for forward flow:
• Parents are computed before their children

• For backwards flow: use reverse post-order of the reverse CFG
• Reverse the CFG
• perform a reverse post-order

• Different from post order?

Example

A

BC

D

post order: D, C, B, A

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

Example

A

BC

D

post order: D, C, B, A

A

BC

D

reverse CFG

rpo on reverse CFG: D, B, C, A

Example

A

BC

D

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B

Example

A

BC

D

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B

updates in backwards flow

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

s = a[x] + 1;

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

VarKill also needs to know about aliasing

Sound vs. Complete

• Sound: Any property the analysis says is true, is true. However, there
may be false positives

• Complete: Any error the analysis reports is actually an error. The
analysis cannot prove a property though.

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

How to instantiate the UEVar and VarKill for sound/complete analysis w.r.t. memory?

a[x] = s + 1; s = a[x] + 1;

Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

could come from arguments, etc.
n

s0 s1

dead_branch

alive_branch

Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

n

s2 s3
s0 s1

need to branch to all possible
basic blocks!

The Data Flow Framework

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

f(x) = Opv in (succ | preds) c0 op1 (f(n) op2 c2)

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

An expression e is “available” at a basic block bx if for all
paths to bx , e is evaluated and none of its arguments are
overwritten

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

Forward Flow

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

intersection implies “must” analysis

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions
that are evaluated AND operands are not redefined

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

AvailExpr(p) is any expression that is available at p

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined
in p

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

n

p0 p1 p2

Any expression
that is available (and not killed)
the parents, along with expressions exposed by
all the parents.

Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all
paths that leave bx , e is evaluated

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

Backwards flow

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))
”must” analysis

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions
that are computed in p before operands are overwritten.

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

Application: you can hoist AntOut expressions to compute as early as possible

Reaching Definitions

• Read about this in 9.2.4

• trace variable usages in block b to possible definitions

• can be used in alias analysis

Next Lecture

• SSA form and homework

