CSE211: Compiler Design

Oct. 22, 2020

* Topic: Local value numbering
continued and data flow analysis

* Questions:

Questions/comments about
homework 17

What are some difficult programs for
local value numbering?

Announcements

* Homework 2 released! Have a look
but don’t panic

* Remember, due dates pushed back 1
week

* Part 1 should be possible after
today’s lecture

* The theory for Part 2 is in lecture. We
will go over code next lecture.

DON'T PANIC

CSE211: Compiler Design

Oct. 22, 2020

* Topic: Local value numbering
continued and data flow analysis

* Questions:

Questions/comments about
homework 17

What are some difficult programs for
local value numbering?

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; o
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—|az = b0 + cl; t “b0 + cl” : “a2”
b4 = a2 - d3; } '
cS = bd + cl;
dé = a2 - d3;

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; t “DO + cl” : “a2”
— |b4 = a2 - d3; } '

cS = bd + cl;

dé = a2 - d3;

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H =
a2z = b0 + clj “b0 + cl” “a2",
— |b4d = a2 - d3; “a2 - d3” : "b4",
c5 = bd + cl; }
dé = a2 - d3;

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H = {
a2z = b0 + clj “b0 + cl” “a2",
bd = a2 - d3; “a2 - d3” : "ba",
—— |c5 = bd + cl; }
dé = a2 - d3;

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; i WpO 4 ol : “g2n mismatch due to

b4 = a2 - d3; va2 - d3" : "bdr, numberings!
—— |c5 = bd + cl; }

dé = a2 - d3;

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T o 1 s vane,
bd = a2 - d3; “a2 - d3” : "b4",

_ »|c5 = b4 + Cl; “b4d + cl” : “c5”,
d6 = a2 - d3; }

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T o 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

cS5 = bd + Cl; “b4d + cl” : “c5”,
_ . |d6 = a2 - d3; }

Local Value Numbering

* Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T o 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

c5 = bd + cl; “b4 + cl” : "c57, match!
_ . |d6 = b4; }

Adding Commutativity

 Certain operators are commutative (e.g. ADD and MULTIPLY)

* In this case, the analysis should consider a deterministic order of
operands.

* You can use variable numbers or lexigraphical order

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

f4 = d3 * a2;
c5 = b0 - cl;
dé = a2 * d3;

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

cannot re-order because - is not commutative

- ucl _ bO" . ua2",
f4d = d3 * a2; }

c5 = b0 - cl;
dé = a2 * d3;

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

a2 = cl - b0;

c5 = b0 - cl;
dé = a2 * d3;

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

re-ordered because a2 < d3 lexigraphically

az = cl - b0; t “cl - b0” : “a2”
— | £f4 = d3 * a2; "a2 * d3" : “f4":

c5 = b0 - cl; }

dé = a2 * d3;

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

a2z = cl - bo0; i ugl — pOm s ugon

f4 = d3 * a2; "a2 * d3" “f4":
——|c5 = b0 - cl; }

dé = a2 * d3;

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

az = cl - b0; t “cl - b0” : “a2”,
f4 = d3 * a2; "a2 * d3” : “f4",

——|c5 = b0 - c1; "b0 - cl cS5",
d6 = a2 * d3; '

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

az = cl - b0; t “cl - b0” : “a2”,

f4 = d3 * a2; "a2 * d3” : “f4",

c5 = b0 - cl; "b0 - cl” : “c5”,
—|d6 = a2 * d3; }

Local Value Numbering

* Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

_ H = {
a2 - C]. - bO, ucl - bO" . ua2",
f4 = d3 * a2; "a2 * d3” : “f4",
CS — bO — Cl; "bO - Cl" : ”C5",
—|d6 = f4; '

Local Value Numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

* We need to give back a program such that variables without numbers
is still valid.

Local Value Numbering w/out adding registers

* Example:
a = x + vy,
a = z;

b =x+vy;

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + y2;
ab = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;
a = x + vy;
a = 2z;
b = a;

if we drop the
numbers, the
optimization is
invalid.

Local Value Numbering w/out adding registers

e Solutions?
a = X *+ ¥Y; | numbering
a = z;
b =x+vy;

a3
ab
b6

X1 + y2;
z4
X1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

o))

X + vy
We cannot optimize the first
line, but we can optimize the

BEEEEE | cconc

C X t+ vy

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Yy;
X + vy

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2;
ab = z4;

b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {

}

— la3 = x1 + y2; H = {
a5 = z4; '
b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
— a3 = x1 + y2; H = {
a5=z4; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
— |b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— | c7 = bb6;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {

}

X+y;
X+y;

Q o O o
1 | | I |
~ m
I

X+y;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {

}

a3 = x1 + y2;

—» |b4 = x1 + y2; o
a6 = z5;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {
“a" 6,
“b" 1 4
}
a3 = x1 + y2; Ho= g
bd = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
bd = a3 H={ but we could have
! “x1l + y2" @ *a3” replaced it with b4!
a6 = z5; }
— |7 = X1 + y2;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {
llall : 3,
}
rewind to
this point a3 = x1 + y2; H =
b4 = Xl + Y2 ; llxl + y2,, : lla3ll
ao = z5; }
c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val

Il
P

ua" 3,
"b" 4
}
a3 = x1 + y2; {
H =
b4 - a3, uxl + y2" . [ua3", ub4"],

a6 = z5; }
c7 = x1 + y2; hash a list of possible values

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {
“non 6,
up” 4
}
a3 = x1 + y2; {
H =
fastforward b4 - a3; uxl + y2" . [ua3", "b4"],
again ae = z5; }
— |c7 = x1 + y2;

Local Value Numbering w/out adding registers

* Final heuristic: keep sets of possible values

Current val = {
“non 6,
up” 4
}
a3 = x1 + y2; {
H =
fastforward b4 - a3; uxl + y2" . [ua3", "b4"],
again ae = z5; }
— |c7 = bd;

Local Value Numbering Pitfalls

* Consider a 3 address code that allows memory accesses

a[i] = x[]J] + y[k];
b[1] = x[]] + y[k];
is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!
a[i] = x[]J] + y[k];
b[i] = a[i]; In the worst case, every time a memory location is updated,
- the compiler must update the value for all pointers.

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

(a[i1,3) = (x[31,1) + (y[k1l,2);
b[i1] = x[]] + y[k];

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (x[]],4) + (y[k]l,5);

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

compiler analysis:

(a[i1,3) = (x[31,1) + (y[k1l,2);

can we trace a, X,y to

(b[i],6) = (x[J1,4) + (y[k1,5); o e oa
x = malloc(..);
y = malloc(..);

// a,x,y are never overwritten

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

compiler analysis:

(a[i],3) = (x[31,1) + (y[k1,2);
(b[i]1,6) = (x[31,4) + (y[k1,5); A A

X malloc(..);

in this case we do not have to update the number
Yy malloc(..);

// a,x,y are never overwritten

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

(a[1],3) = (x[J1,1) + (y[k],2);
(b[1],6) = (x[]J1,4) + (vI[k],5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

(a[i]1,3) = (x[J1,1) + (v[k],2); restrict a
(b[i]'6) = (X[j]r4) + (Y[k]r5); programmer annotations can also tell

the compiler that no other pointer
in this case we do not have to update the number can access the memory pointed to by a

Local Value Numbering Pitfalls

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (a[1],3);

Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis

Control Flow Graphs

start:
ro = ...;
rl = ...;
A graph where: br r0, if, else;
* nodes are basic blocks if:
r2 = ...;
br end if;
* edges mean that it is
possible for one block to else:
branch to another r3 = ...
end if:

ré « oo}

Control Flow Graphs

start:
ro = ...;
rl = ...;
A graph where: br r0, if, else;
* nodes are basic blocks if:
r2 = ...;
br end if;
* edges mean that it is
possible for one block to else:
branch to another r3 = ...;
br end if;
end if:
réi = ...;

Control Flow Graphs

A graph where:

* nodes are basic blocks

* edges mean that it is
possible for one block to
branch to another

start:

ro = ...;

rl = ...;

br r0, if, else;
if: else:
r2 = ...; r3 = ...;
br end if; br end if;

N

end if:
rd = ...;

4

Control Flow Graphs
Simple analysis:

What property did we rely
on for local value
numbering?

r0
ril

start:

[]
o o g

[]
o o g

br r0, if, else;

b0

if:
r2 = ...;
br end if;

bl /

N

.

else:
r3 = ...;
br end if;

end if:

rd = ...

b3

Control Flow Graphs
Simple analysis:

What property did we rely on
for local value numbering?

we say that a node b,

“dominates” another node by
iff:

every path from the start to b,
goes through b,

are there
any non-trivial

domination relations

in this graph?

r0
ril

start:

°
L 4

°
L 4

br r0, if, else;

b0

" /

S~

if: else:
r2 = ...; r3 = ...;
br end if; br end if;
end if:
— b3
r4 = ;

Control Flow Graphs
Simple analysis:

What property did we rely on
for local value numbering?

we say that a node b,

“dominates” another node by
iff:

every path from the start to b,
goes through b,

are there
any non-trivial

domination relations

in this graph?

b0 dominates b3

r0
ril

start:

°
L 4

°
L 4

br r0, if, else;

b0

o

if:
r2 = ...;
br end if;

S~

end if:
r4d

else:
r3 = ...;
br end if;
.| b3

Other examples

* The PyCFG tool draws CFGs for simple python code:

* Single statement basic blocks

Dominance

* Given a CFG, determine for each node b,, the set of nodes that
dominate b,

BO
Bl
B2
B3
B4
B5
B6
B7
B8

: o

BO, B1
BO, B1, B2

BO,B1,B5,B6 o @

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO

BO, B1

BO, B1, B2
BO, B1, B3
BO, B1, B3, B4
BO, B1, B5
BO, B1, B5, B6
BO, B1, B5, B7
BO, B1, B5, B8

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO

BO, B1

BO, B1, B2
BO, B1, B3
BO, B1, B3, B4
BO, B1, B5
BO, B1, B5, B6
BO, B1, B5, B7
BO, B1, B5, B3

Can treat this sequence as region,
i.e. and perform local value numbering over it

Computing Dominance

* |[terative fixed point algorithm

* |nitial state, all nodes start with all other nodes are dominators:
e Dom(n)=N
 Dom(start) = {start}

iteratively compute:

Dom(n)={n} U (N . oreds(n) Dom(m))

initial conditions

BO
Bl
B2
B3
B4
B5
B6
B7
B8

0o
o

S22

Dom(n) ={n} U (N

m in preds(n

Node ___limitial __u_

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO

S22

BO, B1
BO, B1, B2
BO, B1, B2, B3

y Dom(m))

Dom(n) = {n} U (nmin preds(n) Dom(m))

Node __linitial 1

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO

S22

BO

BO,B1

BO,B1,B2
BO,B1,B2,B3
BO,B1,B2,B3,B4
BO,B1,B5
BO,B1,B5,B6
BO,B1,B5,B6,B7
BO,B1,B5,B8

Dom(n) ={n} U (N

m in preds(n

y Dom(m))

Node __linital ___u 2
BO BO BO

Bl
B2
B3
B4
B5
B6
B7
B8

S22

BO,B1

BO,B1,B2
BO,B1,B2,B3
BO,B1,B2,B3,B4
BO,B1,B5
BO,B1,B5,B6
BO,B1,B5,B6,B7
BO,B1,B5,B8

BO, B1, B5

Dom(n) ={n} U (N

y Dom(m))

m in preds(n

Node __linital __u 2
BO BO BO

Bl
B2
B3
B4
B5
B6
B7
B8

S22

BO,B1

BO,B1,B2

BO,B1,B2,B3 BO,B1,B3
BO,B1,B2,B3,8B4 BO0,B1,B3,B4
BO,B1,B5

BO,B1,B5,B6

BO,B1,B5,86,87 BO,B1,B5,B7
BO,B1,B5,B8

Dom(n) ={n} U (N

y Dom(m))

m in preds(n

L = I -
BO BO BO

Bl
B2
B3
B4
B5
B6
B7
B8

S22

BO,B1

BO,B1,B2

BO,B1,B2,B3 BO,B1,B3
BO,B1,B2,B3,8B4 BO0,B1,B3,B4
BO,B1,B5

BO,B1,B5,B6

BO,B1,B5,86,87 BO,B1,B5,B7
BO,B1,B5,B8

Dom(n) ={n} U (N

y Dom(m))

m in preds(n

L = I -
BO BO BO

Bl
B2
B3
B4
B5
B6
B7
B8

S22

BO,B1

BO,B1,B2

BO,B1,B2,B3 BO,B1,B3
BO,B1,B2,B3,8B4 BO0,B1,B3,B4
BO,B1,B5

BO,B1,B5,B6

BO,B1,B5,86,87 BO,B1,B5,B7
BO,B1,B5,B8

No change so algorithm
terminates!

Next week

* Flow analysis examples continued:
* node traversal order for faster convergence
* Live variable analysis

* Generalized framework for flow analysis

e SSA form

