
CSE211: Compiler Design
Oct. 22, 2020

• Topic: Local value numbering
continued and data flow analysis

• Questions:

Questions/comments about
homework 1?

What are some difficult programs for
local value numbering?

Announcements

• Homework 2 released! Have a look
but don’t panic
• Remember, due dates pushed back 1

week

• Part 1 should be possible after
today’s lecture

• The theory for Part 2 is in lecture. We
will go over code next lecture.

CSE211: Compiler Design
Oct. 22, 2020

• Topic: Local value numbering
continued and data flow analysis

• Questions:

Questions/comments about
homework 1?

What are some difficult programs for
local value numbering?

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

mismatch due to
numberings!

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}

Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = b4;

match!

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}

Adding Commutativity

• Certain operators are commutative (e.g. ADD and MULTIPLY)

• In this case, the analysis should consider a deterministic order of
operands.

• You can use variable numbers or lexigraphical order

Local Value Numbering

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

H = {
}a2 = c1 - b0;

f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local Value Numbering

H = {
“c1 - b0” : “a2”,

}

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

cannot re-order because - is not commutative

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local Value Numbering

H = {
“c1 - b0” : “a2”,

}

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local Value Numbering

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,

}

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

re-ordered because a2 < d3 lexigraphically

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local Value Numbering

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,

}

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local Value Numbering

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,
”b0 - c1” : “c5”,

}

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

Local Value Numbering

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,
”b0 - c1” : “c5”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

Local Value Numbering

H = {
“c1 - b0” : “a2”,
”a2 * d3” : “f4”,
”b0 - c1” : “c5”,

}

a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = f4;

• Algorithm optimization: for commutative operations, re-order
operands into a deterministic order

Local Value Numbering w/out adding registers

• We’ve assumed we have access to an unlimited number of virtual
registers.

• In some cases we may not be able to add virtual registers
• If an expensive register allocation pass has already occurred.

• We need to give back a program such that variables without numbers
is still valid.

Local Value Numbering w/out adding registers

• Example:

a = x + y;
a = z;
b = x + y;

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;

a = x + y;
a = z;
b = a;

numbering

local value
numbering with
unlimited virtual
registers

if we drop the
numbers, the
optimization is
invalid.

Local Value Numbering w/out adding registers

• Solutions?

a = x + y;
a = z;
b = x + y;

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;

numbering

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

We cannot optimize the first
line, but we can optimize the
second

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a = x + y;
a = z;
b = x + y;
c = x + y;

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
}

Current_val = {
}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 3,

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 3,

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 5,

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 5,

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”a3”,

}

Current_val = {
”a” : 5,

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = x1 + y2;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local Value Numbering w/out adding registers

• Keep another hash table to keep the current variable number

a3 = x1 + y2;
a5 = z4;
b6 = x1 + y2;
c7 = b6;

H = {
”x1 + y2” : ”b6”,

}

Current_val = {
”a” : 5,
”b” : 6

}

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a = x + y;
b = x + y;
a = z;
c = x + y;

H = {
}

Current_val = {
}

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = x1 + y2;
a6 = z5;
c7 = x1 + y2;

H = {
}

Current_val = {
}

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 6,
“b” : 4

}

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 6,
“b” : 4

}

but we could have
replaced it with b4!

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = x1 + y2;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : “a3”

}

Current_val = {
“a” : 3,

}

rewind to
this point

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : [“a3”, “b4”],

}

Current_val = {
“a” : 3,
”b” : 4

}

hash a list of possible values

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = x1 + y2;

H = {
“x1 + y2” : [“a3”, ”b4”],

}

Current_val = {
“a” : 6,
“b” : 4

}

fast forward
again

Local Value Numbering w/out adding registers

• Final heuristic: keep sets of possible values

a3 = x1 + y2;
b4 = a3;
a6 = z5;
c7 = b4;

H = {
“x1 + y2” : [“a3”, ”b4”],

}

Current_val = {
“a” : 6,
“b” : 4

}

fast forward
again

Local Value Numbering Pitfalls

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?
No!

only if the compiler can prove that a does not alias x and y

In the worst case, every time a memory location is updated,
the compiler must update the value for all pointers.

Local Value Numbering Pitfalls

• How to number:
• Number each pointer/index pair

(a[i],3) = (x[j],1) + (y[k],2);
b[i] = x[j] + y[k];

Local Value Numbering Pitfalls

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

Local Value Numbering Pitfalls

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

compiler analysis:

can we trace a,x,y to
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

Local Value Numbering Pitfalls

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

compiler analysis:

can we trace a,x,y to
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

in this case we do not have to update the number

Local Value Numbering Pitfalls

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local Value Numbering Pitfalls

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by ain this case we do not have to update the number

Local Value Numbering Pitfalls

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (a[i],3);

• How to number:
• Number each pointer/index pair

• Any pointer/index pair that are not proven not to alias must be incremented
at each instruction

Optimizing over wider regions

• Local value numbering operated over just one basic block.

• We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

• For this, we need Control Flow Graphs and Flow Analysis

Control Flow Graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;

Control Flow Graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

Control Flow Graphs

A graph where:

• nodes are basic blocks

• edges mean that it is
possible for one block to
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

Control Flow Graphs

Simple analysis:

What property did we rely
on for local value
numbering?

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

Control Flow Graphs

Simple analysis:

What property did we rely on
for local value numbering?

we say that a node bx
“dominates” another node by
iff:

every path from the start to by
goes through bx

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3
are there
any non-trivial
domination relations
in this graph?

Control Flow Graphs

Simple analysis:

What property did we rely on
for local value numbering?

we say that a node bx
“dominates” another node by
iff:

every path from the start to by
goes through bx

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3
are there
any non-trivial
domination relations
in this graph?

b0 dominates b3

Other examples

• The PyCFG tool draws CFGs for simple python code:
• Single statement basic blocks

Dominance

• Given a CFG, determine for each node bx, the set of nodes that
dominate bx

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3

B4

B5

B6 B0,B1,B5,B6

B7

B8

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Can treat this sequence as region,
i.e. and perform local value numbering over it

Computing Dominance

• Iterative fixed point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial

B0 B0

B1 N

B2 N

B3 N

B4 N

B5 N

B6 N

B7 N

B8 N

initial conditions

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial I1

B0 B0 ...

B1 N B0, B1

B2 N B0, B1, B2

B3 N B0, B1, B2, B3

B4 N

B5 N

B6 N

B7 N

B8 N

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial I1

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3

B4 N B0,B1,B2,B3,B4

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7

B8 N B0,B1,B5,B8

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial I1 I2

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2

B3 N B0,B1,B2,B3

B4 N B0,B1,B2,B3,B4

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0, B1, B5

B8 N B0,B1,B5,B8

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial I1 I2

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B3 N B0,B1,B2,B3 B0,B1,B3

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7

B8 N B0,B1,B5,B8 ...

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial I1 I2 I3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B3 N B0,B1,B2,B3 B0,B1,B3

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7

B8 N B0,B1,B5,B8 ...

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Node Initial I1 I2 I3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

No change so algorithm
terminates!

Next week

• Flow analysis examples continued:
• node traversal order for faster convergence
• Live variable analysis

• Generalized framework for flow analysis

• SSA form

