CSE211: Compiler Design

 Oct. 20, 2020- Topic: ASTs and 3 address code. Local value numbering
- Questions:

Questions/comments about homework?

What are some compiler optimizations you know about?

Announcements

- Module 2 has been revamped
- Homeworks:
- Homework 2 will be posted on Oct. 22
- Homework 1 is due on Oct. 29
- Thanks to those who have posted!
- Come to the LSD seminar!

Module 2

- This week:
- 3 address code
- local value numbering
- Next week:
- Flow analysis
- Third week:
- SSA
- Homework overview

CSE211: Compiler Design

 Oct. 20, 2020- Topic: ASTs and 3 address code. Local value numbering
- Questions:

Questions/comments about homework?

What are some compiler optimizations you know about?

```
float hoist = z[const];
for (...) {
    x[i] = y[i] * hoist;
}
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- represented many ways:

```
rx = ry op rz;
r5 = r3 + r6;
r6 = r0 * r7;
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- represented many ways:

```
rx\leftarrowry op rz;
r5\leftarrowr3 + r6;
r6\leftarrowr0 * r7;
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- represented many ways:

```
rx = op ry, rz;
r5 = add r3, r6;
r6 = mult r0, r7;
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- some instructions don't fit the pattern:
store ry, rz;
r5 = copy r3;
r6 = call(r0, r1, r2, r3...);

3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- Other information:
- Annotated
- Typed
- Alignment

$$
\begin{aligned}
& r 5=r 3+r 6 ;!d b g!22 \\
& \text { r6 }=r 0 *(i n t 32) 67 ; \\
& \text { store }(r 1, r 2), \text { aligned } 8
\end{aligned}
$$

3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- Control flow: branches and labels:
br r0, label1, label2;
br label1;

Creating 3 address code from AST

Abstract Syntax Trees

- Remember the expression parse tree input: 2-3-4

Operator	Name	Productions
,+-	Expr	: Expr + Term \| Expr - Term \| Term
*,/	Term	: Term * Pow : Term / Pow \| Pow
\wedge	Pow	: Factor ^ Pow \| Factor
()	Factor	(Expr) \| NUM

Abstract Syntax Trees

- Remember the expression parse tree
input: 2-3-4

Abstract Syntax Trees

- Remember the expression parse tree input: 2-3-4

Abstract Syntax Trees

- Easier to see bigger trees, e.g. quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\left(-b-\operatorname{sqrt}\left(b * b-4^{*} a * c\right)\right) /(2 * a)
$$

$$
x=\left(-b-\operatorname{sqrt}\left(b^{*} b-4^{*} a * c\right)\right) /\left(2^{*} a\right)
$$

Convert this code to 3 address code post-order traversal, creating virtual registers

Convert this code to 3 address code post-order traversal, creating virtual registers
r0 $=$ neg(b);

Convert this code to 3 address code post-order traversal, creating virtual registers

```
r0 = neg(b);
r1 = b * b;
```


Convert this code to 3 address code post-order traversal, creating virtual registers

```
r0 = neg(b);
r1 = b * b;
\[
r 2=4 * a ;
\]
```


Convert this code to 3 address code post-order traversal, creating virtual registers

```
r0 = neg(b);
r1 = b * b;
\[
\text { r2 }=4 \text { * a; }
\]
\[
r 3=r 2 * c ;
\]
```


Convert this code to 3 address code post-order traversal, creating virtual registers

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
```


Convert this code to 3 address code post-order traversal, creating virtual registers

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
```


Convert this code to 3 address code post-order traversal, creating virtual registers

$$
\begin{aligned}
& \mathrm{r} 0=\text { neg }(\mathrm{b}) ; \\
& \mathrm{r} 1=\mathrm{b} * \mathrm{~b} ; \\
& \mathrm{r} 2=4 * \mathrm{a} ; \\
& \mathrm{r} 3=\mathrm{r} 2 * \mathrm{c} ; \\
& \mathrm{r} 4=\mathrm{r} 1-\mathrm{r} 3 ; \\
& \mathrm{r} 5=\mathrm{sqrt}(\mathrm{r} 4) ; \\
& \mathrm{r} 6=\mathrm{r} 0-\mathrm{r} 5 ;
\end{aligned}
$$

Convert this code to 3 address code post-order traversal, creating virtual registers

$$
\begin{aligned}
& r 0=n e g(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=s q r t(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ;
\end{aligned}
$$

Convert this code to 3 address code post-order traversal, creating virtual registers

$$
\begin{aligned}
r 0 & =n e g(b) ; \\
r 1 & =b * b ; \\
r 2 & =4 * a ; \\
r 3 & =r 2 * c ; \\
r 4 & =r 1-r 3 ; \\
r 5 & =s q r t(r 4) ; \\
r 6 & =r 0-r 5 ; \\
r 7 & =2 * a ; \\
r 8 & =r 6 / r 7 ;
\end{aligned}
$$

Convert this code to 3 address code post-order traversal, creating virtual registers

$$
\begin{aligned}
& \mathrm{r} 0=\text { neg }(\mathrm{b}) ; \\
& \mathrm{r} 1=\mathrm{b} * \mathrm{~b} ; \\
& \mathrm{r} 2=4 * \mathrm{a} ; \\
& \mathrm{r} 3=\mathrm{r} 2 * \mathrm{c} ; \\
& \mathrm{r} 4=\mathrm{r} 1-\mathrm{r} 3 ; \\
& \mathrm{r} 5=\operatorname{sqrt}(\mathrm{r} 4) ; \\
& \mathrm{r} 6=\mathrm{r} 0-\mathrm{r}) ; \\
& \mathrm{r} 7=2 * \mathrm{a} ; \\
& \mathrm{r} 8=\mathrm{r} 6 / \mathrm{r} 7 ; \\
& \mathrm{x}=\mathrm{r} 8 ;
\end{aligned}
$$

3 address code use-case

What now?

We can make a data-dependency graph (DDG)

```
r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


What now?

We can make a data-dependency graph (DDG)

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


What now?

We can make a data-dependency graph (DDG)

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


What now?

We can make a data-dependency graph (DDG)

$$
\begin{aligned}
& \mathrm{r} 0=\text { neg }(\mathrm{b}) ; \\
& \mathrm{r} 1=\mathrm{b} * \mathrm{~b} ; \\
& \mathrm{r} 2=4 * \mathrm{a} ; \\
& \mathrm{r} 3=\mathrm{r} 2 * \mathrm{c} ; \\
& \mathrm{r} 4=\mathrm{r} 1-\mathrm{r} 3 ; \\
& \mathrm{r} 5=\mathrm{sqrt}(\mathrm{r} 4) ; \\
& \mathrm{r} 6=r 0-\mathrm{r}) ; \\
& \mathrm{r} 7=2 * \mathrm{a} ; \\
& \mathrm{r} 8=\mathrm{r} 6 / \mathrm{r} 7 ; \\
& \mathrm{x}=\mathrm{r} 8 ;
\end{aligned}
$$

What now?

We can make a data-dependency graph (DDG)

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=s q r t(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x
\end{aligned}
$$

What now?

We can make a data-dependency graph (DDG)

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=s q r t(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x
\end{aligned}
$$

What now?

r0 $=\operatorname{neg}(b)$;
$r 1=b * b$;
$r 2=4 * a$;
$r 3=r 2 * c ;$
$r 4=r 1-r 3 ;$
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
$\mathrm{x}=\mathrm{r} 8$;

What now?

We can make a data-dependency graph (DDG)

$$
\begin{aligned}
& r 0=\operatorname{neg}(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=s q r t(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x=r 8 ;
\end{aligned}
$$

What now?

We can make a data-dependency graph (DDG)

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```

can be done in parallel!

Can be hoisted!

What now?


```
r0= neg(b);
r1 = b * b;
r2=4* a; should we hoist this one?
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


back to 3 address code

$$
\begin{aligned}
& \mathrm{x}=\operatorname{expr} 0 ; \\
& \mathrm{y}=\operatorname{expr} 1 ; \\
& \mathrm{z}=\operatorname{expr} 2 ;
\end{aligned}
$$

- Convert each expression to an AST.
- Convert each AST to 3 address code.
- Sequence each expression.

What about control flow?

- 3 address code typically contains a conditional branch:
br <reg>, <label0>, <label1>
if the value in <reg> is true, branch to <label0>, else branch to label1
br <label0>
unconditional branch

What about control flow?

```
r0 = <expression>;
br rO, inside_if, after_if;
inside_if:
<conditional_statements>;
after_if:
<after_if_statements>;
```


What about control flow?

beginning_label:
rO = <expression>
br r0, inside_loop, after_loop;
inside_loop:
<inside_loop_statements>
br beginning_label;
after_loop:
<after_loop_statements>

For loop

For loop

<assignment_expr> <conditional_expr> <update_expr> <after_loop_statements>

Pros and cons?

IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceeding instructions will execute

IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceeding instructions will execute

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```


IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit

Two Basic Blocks
Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

```
Label_x:
op1;
op2;
op3;
Label_y:
op4;
op5;
```


IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

Two Basic Blocks

```
Label_x:
op1;
op2;
op3;
Label_y:
op4;
op5;
```


IR Program structure

How might they appear in a high-level language?

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit

Four Basic Blocks

Two Basic Blocks

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

```
Label_x:
op1;
op2;
op3;
Label_y:
op4;
op5;
```


Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:

```
Label_0:
x = a + b; ;
```

- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{a}+\mathrm{b} ;
\end{array} \\
\end{array} \begin{aligned}
& \substack{\text { optimized } \\
\text { to }}
\end{aligned} \begin{aligned}
& \text { Label_0: } \\
& \mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
& \mathrm{y}=\mathrm{x} ;
\end{aligned}
$$

- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks

| Label_0:
 $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
 Label_1:
 $\mathrm{y}=\mathrm{a}+\mathrm{b} ;$ | CANNOT
 alwaysoptimized
 to |
| :--- | :--- | | Label_0: |
| :--- |
| $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$ |
| Label_1: |
| $\mathrm{y}=\mathrm{x} ;$ |

- Global optimizations:
- operates across an entire procedure
- what about across procedures?

$$
\left.\begin{array}{|l|}
\hline \begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{a}+\mathrm{b} ;
\end{array} \\
\end{array} \xrightarrow{\text { optimized }} \begin{aligned}
& \text { to }
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Label_0: } \\
& \mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
& \mathrm{y}=\mathrm{x} ;
\end{aligned}
$$

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks

- Global optimizations:
- operates across an entire procedure
- what about across procedures?
code could skip Label_0, leaving x undefined!

```
br Label_1;
Label_0:
x = a + b;
Label_1:
y=a}+b
```


Optimization levels

at a higher-level, we cannot replace:

$$
\begin{gathered}
y=a+b \\
\text { with } \\
y=x
\end{gathered}
$$

| Label_0:
 $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
 $\mathrm{y}=\mathrm{a}+\mathrm{b} ;$ |
| :--- | | optimized |
| :--- |
| to |\quad| Label_0: |
| :--- |
| $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$ |
| $\mathrm{y}=\mathrm{x} ;$ |

| Label_0:
 $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
 Label_1:
 $\mathrm{y}=\mathrm{a}+\mathrm{b} ;$
 always optimized
 toCANNOT
 $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
 Label_1:
 $\mathrm{y}=\mathrm{x} ;$ |
| :--- | :--- |

```
x = a + b;
if (x) {
}
else {
}
y = a + b;
```

But if a and b are not redefined, then

$$
y=a+b
$$

can be replaced with

$$
y=x
$$

code could skil Label_0 $\left.\begin{array}{|l}\text { br Label_1; } \\ \text { Label_0 : } \\ \mathrm{x}=\mathrm{a}+\mathrm{b} ; \\ \text { Label_1: } \\ \mathrm{y}=\mathrm{a}+\mathrm{b} ;\end{array}\right]$

Moving on to a concrete optimization algorithm

Local Value Numbering

- Local optimization
- can be extended with the help of flow analysis
- Aims to remove redundant arithmetic instructions

```
a = b + c;
b = a - d;
c = b + c;
d = a - d;
```


Local Value Numbering

- Local optimization
- can be extended with the help of flow analysis
- Aims to remove redundant arithmetic instructions

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
\mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{array} \quad \xrightarrow{\text { valid? }} \begin{array}{l}
\mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
\mathrm{c}=\mathrm{a} ; \\
\mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{array} \\
& \hline
\end{aligned}
$$

Local Value Numbering

- Local optimization
- can be extended with the help of flow analysis
- Aims to remove redundant arithmetic instructions

$\mathrm{a}=\mathrm{b}+\mathrm{c} ;$
$\mathrm{b}=\mathrm{a}-\mathrm{d} ;$
$\mathrm{c}=\mathrm{b}+\mathrm{c} ;$
$\mathrm{d}=\mathrm{a}-\mathrm{d} ;$

$\xrightarrow{\text { valid? }} \quad$| $\mathrm{a}=\mathrm{b}+\mathrm{c} ;$ |
| :--- |
| $\mathrm{b}=\mathrm{a}-\mathrm{d} ;$ |
| $\mathrm{c}=\mathrm{a} ;$ |
| $\mathrm{d}=\mathrm{a}-\mathrm{d} ;$ |\quad No! Because b is redefined

Local Value Numbering

- Local optimization
- can be extended with the help of flow analysis
- Aims to remove redundant arithmetic instructions

$$
\begin{array}{|l|}
\hline \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
\mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{array} \xrightarrow{\text { valid? }} \begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{d}=\mathrm{b} ;
\end{aligned}
$$

Local Value Numbering

- Algorithm:
- Provide a number to each variable. Update the number each time the variable is updated.
- Several different implementations. I keep a global counter; increment with new variables or assignments

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned} \quad \text { Global_counter }=7
$$

Local Value Numbering

- Algorithm:
- Provide a number to each variable. Update the number each time the variable is updated.
- Several different implementations. I keep a global counter; increment with new variables or assignments

$$
\begin{aligned}
\mathrm{a} 2 & =\mathrm{b} 0+\mathrm{c} 1 ; \\
\mathrm{b} 4 & =\mathrm{a} 2-\mathrm{d} 3 ; \\
\mathrm{c} 5 & =\mathrm{b} 4+\mathrm{c} 1 ; \\
\mathrm{d} 6 & =\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{H} \\
\}
\end{gathered}=\{
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} ;
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}=\left\{{ }^{\prime} \mathrm{b} 0+\mathrm{c} 1 ": \mathrm{a} 2,\right. \\
& \}
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
\mathrm{a} 2 & =\mathrm{b} 0+\mathrm{c} 1 ; \\
\mathrm{b} 4 & =\mathrm{a} 2-\mathrm{d} 3 ; \\
\mathrm{c} 5 & =\mathrm{b} 4+\mathrm{c} 1 ; \\
\mathrm{d} 6 & =\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$\begin{array}{ll}\mathrm{H}=\left\{\begin{array}{c}\text { "b0 }+\mathrm{c} 1 ": ~ " a 2 ", ~\end{array}\right. \\ & \text { "a2-d3": "b4", }\end{array}$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$H=\{$

$$
" \mathrm{~b} 0+\mathrm{c} 1 ": " \mathrm{a} 2 "
$$

"a2 - d3" : "b4"

$$
\}
$$

mismatch due to numberings!

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
\mathrm{a} 2 & =\mathrm{b} 0+\mathrm{c} 1 ; \\
\mathrm{b} 4 & =\mathrm{a} 2-\mathrm{d} 3 ; \\
\mathrm{c} 5 & =\mathrm{b} 4+\mathrm{c} 1 ; \\
\mathrm{d} 6 & =\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}=\{ \\
& \text { "b0 + c1" : "a2", } \\
& \text { "a2 - d3" : "b4", } \\
& \text { "b4 + c1" : "c5", } \\
& \text { \} }
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}=\{ \\
& \text { "b0 + c1" : "a2", } \\
& \text { "a2 - d3" : "b4", } \\
& \text { "b4 + c1" : "c5", } \\
& \text { \} }
\end{aligned}
$$

Local Value Numbering

- Algorithm: Now that variables are numbered
- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{b} 4 ;
\end{aligned}
$$

$\mathrm{H}=\{$
"b0 + c1" : "a2",
"a2 - d3" : "b4",
"b4 + c1" : "c5",

Next week

- Local value numbering continued:
- commutative operations
- register usage
- Introduction to flow analysis:
- How to create extended basic blocks for local analysis

