
CSE211: Compiler Design 
Oct. 20, 2020

• Topic: ASTs and 3 address code.
Local value numbering

• Questions:

Questions/comments about 
homework?

What are some compiler 
optimizations you know about?



Announcements

• Module 2 has been revamped

• Homeworks:
• Homework 2 will be posted on Oct. 22
• Homework 1 is due on Oct. 29

• Thanks to those who have posted!

• Come to the LSD seminar!



Module 2

• This week:
• 3 address code
• local value numbering

• Next week: 
• Flow analysis

• Third week:
• SSA
• Homework overview



CSE211: Compiler Design 
Oct. 20, 2020

• Topic: ASTs and 3 address code.
Local value numbering

• Questions:

Questions/comments about 
homework?

What are some compiler 
optimizations you know about?

float hoist = z[const];
for (…) {

x[i] = y[i] * hoist;
}



3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value

• represented many ways:

rx = ry op rz;

r5 = r3 + r6;
r6 = r0 * r7;



3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value
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3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value

• represented many ways:

rx = op ry, rz;

r5 = add r3, r6;
r6 = mult r0, r7;



3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value

• some instructions don’t fit the pattern:

store ry, rz;

r5 = copy r3;
r6 = call(r0, r1, r2, r3…);



3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value

• Other information:
• Annotated
• Typed
• Alignment

r5 = r3 + r6; !dbg !22
r6 = r0 *(int32) 67;
store(r1,r2), aligned 8



3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value

• Control flow: branches and labels:

br r0, label1, label2;

br label1;



Creating 3 address code from AST



Abstract Syntax Trees

• Remember the expression parse tree

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Pow
: Term / Pow
| Pow

^ Pow : Factor ^ Pow
| Factor

() Factor : ( Expr )
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor



Abstract Syntax Trees

• Remember the expression parse tree input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

-

2 3

4-

Much more compact!



Abstract Syntax Trees

• Remember the expression parse tree input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

-

2 3

4-

Much more compact!

nodes are operators

nodes are 
production

rules



Abstract Syntax Trees

• Easier to see bigger trees, e.g. quadratic formula:

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Thanks to Sreepathi Pai for the example idea!



x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)



Convert this code to 3 address code

post-order traversal, creating virtual 
registers



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;



Convert this code to 3 address code

post-order traversal, creating virtual 
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x  = r8;



3 address code use-case



What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x  = r8;

x



What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
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What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
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What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
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What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
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What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x  = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3



What now?
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What now?
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What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
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can be done in parallel!

Can be hoisted!



What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x  = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

should we hoist this one?



back to 3 address code

x = expr0;
y = expr1;
z = expr2;

• Convert each expression to an AST. 
• Convert each AST to 3 address code.
• Sequence each expression.



What about control flow?

• 3 address code typically contains a conditional branch:

br <reg>, <label0>, <label1>

if the value in <reg> is true, branch to <label0>, else branch to label1

br <label0>

unconditional branch



What about control flow?

IF

<after_if_statements><conditional_statements><expression>

r0 = <expression>;
br r0, inside_if, after_if;

inside_if:
<conditional_statements>;

after_if:
<after_if_statements>;



What about control flow?

WHILE

<after_loop_statements><inside_loop_statements><expression>

beginning_label:
r0 = <expression>

br r0, inside_loop, after_loop;

inside_loop:
<inside_loop_statements>
br beginning_label;

after_loop:
<after_loop_statements>



For loop FOR

<after_loop_statements><conditional_expr><assignment_expr> <update_expr>



For loop FOR

<after_loop_statements><conditional_expr><assignment_expr> <update_expr>

WHILE

<after_loop_statements><inside_loop_statements>< conditional_expr >

<assignment_expr>

<update_expr>

sequenced

sequenced

Pros and cons?



IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceeding instructions will execute



IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceeding instructions will execute

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block



IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceeding instructions will execute

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block

Two Basic Blocks



IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceeding instructions will execute

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a 
high-level language?

Single Basic Block

Two Basic Blocks



IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceeding instructions will execute

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a 
high-level language?

…
if (x) {

…
}
else {
…

}
…

Single Basic Block

Two Basic Blocks

Four Basic Blocks



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT 
always optimized 

to

Label_0:
x = a + b;

Label_1:
y = x;



Optimization levels

• Local optimizations: 
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT 
always optimized 

to

Label_0:
x = a + b;

Label_1:
y = x;

br Label_1;

Label_0:
x = a + b;

Label_1:
y = a + b;

code could skip Label_0,
leaving x undefined!



Optimization levels Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT 
always optimized 

to

Label_0:
x = a + b;

Label_1:
y = x;

br Label_1;

Label_0:
x = a + b;

Label_1:
y = a + b;

code could skil Label_0

…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

at a higher-level, 
we cannot replace:

y = a + b.
with 
y = x;

x = a + b;
if (x) {

…
}
else {

…
}
y = a + b;
…

But if a and b are
not redefined, then

y = a + b;
can be replaced with

y = x;



Moving on to a concrete optimization algorithm



Local Value Numbering

• Local optimization
• can be extended with the help of flow analysis

• Aims to remove redundant arithmetic instructions

a = b + c;
b = a - d;
c = b + c;
d = a - d;



Local Value Numbering

• Local optimization
• can be extended with the help of flow analysis

• Aims to remove redundant arithmetic instructions

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = a;
d = a - d;

valid?



Local Value Numbering

• Local optimization
• can be extended with the help of flow analysis

• Aims to remove redundant arithmetic instructions

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = a;
d = a - d;

valid? No! Because b is redefined



Local Value Numbering

• Local optimization
• can be extended with the help of flow analysis

• Aims to remove redundant arithmetic instructions

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

valid? Yes!



Local Value Numbering

• Algorithm: 

• Provide a number to each variable. Update the number each time the
variable is updated.

• Several different implementations. I keep a global counter; increment 
with new variables or assignments

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

Global_counter = 7



Local Value Numbering

• Algorithm: 

• Provide a number to each variable. Update the number each time the
variable is updated.

• Several different implementations. I keep a global counter; increment 
with new variables or assignments

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;



Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;



Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
}



Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : a2,

}



Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
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• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
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“a2 - d3” : ”b4”,
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• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
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Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

mismatch due to
numberings!



Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.
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Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}



Local Value Numbering

• Algorithm: Now that variables are numbered

• Iterate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their lhs.

• At each step, check to see if the rhs has already been computed.

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = b4;

match!

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}



Next week

• Local value numbering continued:
• commutative operations
• register usage

• Introduction to flow analysis:
• How to create extended basic blocks for local analysis


