CSE211: Compiler Design Oct. 15, 2020

- **Topic**: Review of parsing with derivatives and IRs
- Questions:

Questions/comments about derivatives and readings?

• δ_{c} (re), where re is: • $re_{rhs} \cdot re_{lhs}$ $\delta_{c}(re_{rhs}) \cdot re_{lhs} |$ if ε in re_{rhs} then $\delta_{c}(re_{lhs})$ else {}

Announcements

- Start of module 2
 - but with some review of parsing with derivatives
- Homeworks:
 - Homework 2 will be posted on Oct. 22
 - Homework 1 is due on Oct. 29
- Hopefully you have started and can come to office hours or discuss on canvas!

Homework notes

- in PLY, production rules cannot span multiple lines (unless it is a new option)
- there is a nonassoc option for associativity. When might we use that?
- What does C do?
- (1 == 0) false
- (1 == 0 == 0) true

CSE211: Compiler Design Oct. 15, 2020

- **Topic**: Review of parsing with derivatives and IRs
- Questions:

Questions/comments about derivatives and readings?

• δ_{c} (re), where re is: • $re_{rhs} \cdot re_{lhs}$ $\delta_{c}(re_{rhs}) \cdot re_{lhs} |$ if ε in re_{rhs} then $\delta_{c}(re_{lhs})$ else {}

```
regular expression =

{}

{ {ε}

{ a" (single character)

{ re<sub>lhs</sub> \| re<sub>rhs</sub>

{ re<sub>lhs</sub> . re<sub>rhs</sub>

{ re<sub>starred</sub> *
```

$$\begin{array}{l} regular\ expression = & & \\ & | \left\{ \right\} & & re = \left\{ \right\} \\ & | \left\{ \varepsilon \right\} & & re = \left\{ \varepsilon \right\} \\ & | \ re_{lhs} \ | \ re_{rhs} & & re = \left\{ \varepsilon \right\} \\ & | \ re_{lhs} \ re_{rhs} & & re = "a" \\ & | \ re_{starred} \ * & \end{array}$$

```
regular expression =

{}

{ {ε}

{ "a" (single character)

{ re<sub>lhs</sub> \| re<sub>rhs</sub>

{ re<sub>lhs</sub> . re<sub>rhs</sub>

{ re<sub>starred</sub> *
```

=

input: a.b | c*

Operator	Name	Productions
I	union	: union \ concat concat
	concat	: concat . starred starred
*	starred	: starred * unit
()	unit	: (union) CHAR

input: a.b | c*

Operator	Name	Productions
I	union	: union \ concat concat
	concat	: concat . starred starred
*	starred	: starred * unit
()	unit	: (union) CHAR

input: a.b | c*

abstract syntax tree

regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{starred} *

input: a.b | c*

abstract syntax tree

regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{starred} *

input: a.b | c*

abstract syntax tree

regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{starred} *

each node is also a regular expression!

abstract syntax tree

- Check homework code to see AST construction
- Question: given a regular expression RE, how check if a string is in the language?
- parsing with derivatives!

each node is also a regular expression!

Language Derivatives Examples

- L = {"aaa", "ab", "ba", "bba"}
- $\delta_a(L) = \{$ "aa", "b" $\}$
- δ_{aa} (L) = {"a"}
- $\delta_b(L) = \{ "a", "ba" \}$
- $\delta_{ba}(L) =$

Language Derivatives Examples

- L = {"aaa", "ab", "ba", "bba"}
- $\delta_a(L) = \{$ "aa", "b" $\}$
- $\delta_{aa}(L) = \{ "a" \}$
- $\delta_b(L) = \{ "a", "ba" \}$
- $\delta_{ba}(L) = \{\varepsilon\}$

- Given a regular expression *re*, any derivative of *re* is also a regular expression
- Let's try some!

- re = "a" L(re) = {"a"}
- $\delta_a(re) = ""$
- $\delta_b(re) = None$

- *re* = "a"
- $\delta_a(re) = \{\varepsilon\}$
- $\delta_b(re) = \{\}$

- re = "a | b" L = {"a", "b"}
- $\delta_a(re) = ""$
- $\delta_b(re) = ""$

- re = "a | b"
- $\delta_a(re) = \{\varepsilon\}$
- $\delta_b(re) = \{\varepsilon\}$

- $\delta_a(re) = "b | a"$
- $\delta_b(re) = None$

- *re* = "a.a | a.b"
- $\delta_a(re) = "a \mid b"$
- $\delta_b(re) = \{\}$

•
$$\delta_a(re) = "b.c.(a.b.c)*"$$

 $\delta_a(L) = \{$ "bc", "bcabc", "bcabcabc" ... $\}$

- *re* = "(a.b.c)*"
- $\delta_a(re) = "b.c.(a.b.c)*"$

What is a method for computing the derivative?

Consider the base cases

- δ_c (*re*) = match re with:
 - {} return {}
 - {ε} return {}
 - "a" (single character) if "a" == c then return {ε} else return {}

regular expression =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return $\delta_{c}(re_{starred})$. $re_{starred}^{*}$

regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{lhs} . re_{rhs}

• re_{lhs} . re_{rhs}

 $\begin{array}{ll} \mbox{return} & \delta_{\it c}(\it re_{\it lhs}) \ . \ \it re_{\it rhs} \ | \\ \ \ \it if \ \ \ \ \ in \ \it re_{\it lhs} \ then \ \delta_{\it c}(\it re_{\it rhs}) \ else \ \{\} \end{array}$

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

Example: re = "a.a | a.b" $\delta_a(re) = "a | b"$

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{starred}*

return $\delta_c(re_{starred})$. $re_{starred}^*$

Example: re = "(a.b.c)*" $\delta_a(re) = "b.c.(a.b.c)*"$

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} . re_{rhs}

return $\delta_{c}(re_{lhs}) \cdot re_{rhs}$

if ε in re_{lhs} then $\delta_c(re_{rhs})$ else {}

Example: re = "a.b" $\delta_a(re) = "b"$

Consider the recursive cases:

• δ_c (*re*) = match re with:

• re_{lhs} . re_{rhs} return $\delta_c(re_{lhs})$. re_{rhs} | $if \varepsilon in re_{lhs} then \delta_c(re_{rhs})$ else {} re = "(a.c)*.a.b"

$$\delta_a(re) = "c.(a.c)*.a.b \mid b"$$

Nullable operator

• NULL(re) = $if \epsilon \in re \text{ then: } \{\epsilon\}$ $else: \{\}$

Nullable operator

• NULL(re) =

$$if \in re \text{ then: } \{\varepsilon\}$$

 $else: \{\}$

regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{starred} *

What is a method for computing NULL?

Consider the base cases

- NULL(*re*) = match re with:
 - {} return {}
 - $\{\varepsilon\}$ return $\{\varepsilon\}$
 - "a" (single character) return {}

regular expression =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

What is a method for computing NULL?

Consider the recursive cases:

- NULL(*re*) = match re with:
 - re_{lhs} | re_{rhs}

return NULL(*re*_{*lhs*}) | NULL(*re*_{*rhs*})

• re_{starred}*

return $\{\varepsilon\}$

regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{starred} *

• re_{lhs} . re_{rhs}

return NULL(*re_{lhs}*) . NULL(*re_{rhs}*)
Derivative Recursive Cases

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return
$$\delta_c(re_{starred})$$
 . $re_{starred}^*$

• re_{lhs} . re_{rhs}

return $\delta_c(re_{lhs}) \cdot re_{rhs}$ | if ϵ in re_{lhs} then $\delta_c(re_{rhs})$ else {} regular expression =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Derivative Recursive Cases

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return $\delta_c(re_{starred})$. $re_{starred}^*$

• re_{lhs} . re_{rhs}

return $\delta_c(re_{lhs})$. re_{rhs} / NULL(re_{lhs}) . $\delta_c(re_{rhs})$ regular expression =

 |{}
 |ε
 | a (single character)
 | re_{lhs} | re_{rhs}
 | re_{lhs} . re_{rhs}
 | re_{starred} *

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

L(re) = {.. s ..}

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

$$\delta_{c1}$$
 (re

L(re) = {.. s ..}

 $L(\delta_{c1} (re)) = \{.. s[1:] ..\}$

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

$$\begin{split} \delta_{c1} \, (re) & \delta_{c2} \, (\delta_{c1} \, (re) \,) &= \delta_{c1,c2} \, (re) \\ L(re) &= \{ \ldots \, s \, \ldots \} & \\ L(\delta_{c1} \, (re)) &= \{ \ldots \, s[1:] \, \ldots \} & L(\delta_{c1,c2} \, (re)) &= \{ \ldots \, s[2:] \, \ldots \} \end{split}$$

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

L(re)

$$= \{ \dots s \dots \}$$
 $\delta_{c1} (re) = \{ \dots s[1:] \dots \}$ $\delta_{c2} (\delta_{c1} (re)) = \{ \dots s[2:] \dots \}$ $\delta_{s} (re)$
 $L(\delta_{c1} (re)) = \{ \dots s[1:] \dots \}$ $L(\delta_{c1,c2} (re)) = \{ \dots s[2:] \dots \}$ $L(\delta_{s} (re)) = \{ \dots \varepsilon \dots \}$

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

$$L(re) = \{ \dots \ S \ \dots \}$$

$$L(re) = \{ \dots \ S \ \dots \}$$

$$L(\delta_{c1} (re)) = \{ \dots \ S[1:] \ \dots \}$$

$$L(\delta_{c1,c2} (re)) = \{ \dots \ S[2:] \ \dots \}$$

$$L(\delta_{s}(re)) = \{ \dots \ S \ \dots \}$$

Code overview

Intermediate representations

- Intermediate step between human-accessible programming languages and horrible machine ISAs
- Ideal for analysis because:
 - More regularity than high-level languages (simple instructions)
 - Less constraints than ISA languages (virtual registers)
 - Machine-agnostic optimizations:
 - See godbolt example

$$\begin{array}{c} x = y + z; \\ w = y + z; \end{array} \longrightarrow \begin{array}{c} x = y + z; \\ w = x; \end{array}$$

Different IRs

Many different IRs, each have different purposes

- Trees
 - Abstract syntax trees
 - Good for instruction scheduling
- Textual
 - 3 address code, e.g. LLVM IR
 - Good for local value numberings, removing redundant expressions
- Graphs
 - Control flow graphs
 - Good for data flow analysis

• Remember the expression parse tree

Operator	Name	Productions
+,-	Expr	: Expr + Term Expr - Term Term
*,/	Term	: Term * Pow : Term / Pow Pow
۸	Pow	: Factor ^ Pow Factor
()	Factor	: (Expr) NUM

input: 2-3-4

• Remember the expression parse tree

• Remember the expression parse tree

• Easier to see bigger trees, e.g. quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)$$

Thanks to Sreepathi Pai for the example idea!

$$x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)$$

3 Address IR

Powerful IR

- Close to machine instructions
- Uses virtual registers
- All instructions are of the form:

Special instructions take 1 op

result = load(op1)

Convert this code to 3 address code

post-order traversal, creating virtual registers

Convert this code to 3 address code

post-order traversal, creating virtual registers


```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```



```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


We can make a data-dependency graph (DDG)

We can make a data-dependency graph (DDG)

r0 = neg(b);r1 = b * b; r2 = 4 * a;r3 = r2 * c;r4 = r1 - r3;r5 = sqrt(r4);r6 = r0 - r5;r7 = 2 * a; r8 = r6 / r7;x = r8;

Can be hoisted!

We can make a data-dependency graph (DDG)

r0 = neg(b);r1 = b * b;r2 = 4 * a; r3 = r2 * c;r4 = r1 - r3;r5 = sqrt(r4);r6 = r0 - r5;r7 = 2 * a;r8 = r6 / r7;x = r8;

should we hoist this one?

Power of IRs

- We've shown 3 different IRs:
 - AST
 - 3 address code
 - DDG
- Converting between them allowed different types of code reasoning

Next lecture

- More optimizations for each IR
- AST:
 - Tree balancing for more instruction-level scheduling
- Three address code:
 - Local value numbering for redundant expression pruning
- Control flow graphs:
 - to expand the range of analysis

Bonus: From AST to a stack virtual machine:

A common IR for java bytecode and web assembly.

Easy to implement (can be done completely at the parser)

hard to analyze...

5
4
...

unlimited virtual stack

Bonus: From AST to a stack virtual machine:

push 6

add

 $\operatorname{\mathsf{add}}$

mult

mult

push b;

negate;

push b;

push b;

mult;

push 4;

push a;

mult;

 $\texttt{push} \ \texttt{c}$

mult;

minus;

sqrt;

push 2;

push a;

mult;

divide;

assign x;

