
CSE211: Compiler Design
Oct. 15, 2020

• Topic: Review of parsing with
derivatives and IRs

• Questions:

Questions/comments about
derivatives and readings?

Announcements

• Start of module 2
• but with some review of parsing with derivatives

• Homeworks:
• Homework 2 will be posted on Oct. 22
• Homework 1 is due on Oct. 29

• Hopefully you have started and can come to office hours or discuss on
canvas!

Homework notes

• in PLY, production rules cannot span multiple lines (unless it is a new
option)

• there is a nonassoc option for associativity. When might we use that?

• What does C do?

• (1 == 0) false
• (1 == 0 == 0) true

CSE211: Compiler Design
Oct. 15, 2020

• Topic: Review of parsing with
derivatives and IRs

• Questions:

Questions/comments about
derivatives and readings?

Regular expressions recursive definition

regular expression =
|{}
| {𝜀}
| ”a” (single character)
| relhs \| rerhs
| relhs . rerhs
| restarred *

Regular expressions recursive definition

regular expression =
|{}
| {𝜀}
| ”a” (single character)
| relhs \| rerhs
| relhs . rerhs
| restarred *

re = {}

re = {𝜀}

re = “a”

Regular expressions recursive definition

regular expression =
|{}
| {𝜀}
| ”a” (single character)
| relhs \| rerhs
| relhs . rerhs
| restarred *

re = “a.b”

Regular expressions recursive definition

regular expression =
|{}
| {𝜀}
| ”a” (single character)
| relhs \| rerhs
| relhs . rerhs
| restarred *

re = “a.b”

=

“a” “b”

relhs . rerhs

parse tree for a regular expression

Operator Name Productions

| union : union \| concat
| concat

. concat : concat . starred
| starred

* starred : starred *
| unit

() unit : (union)
| CHAR

input: a.b | c*

parse tree for a regular expression

Operator Name Productions

| union : union \| concat
| concat

. concat : concat . starred
| starred

* starred : starred *
| unit

() unit : (union)
| CHAR

input: a.b | c*

union

union <|>

starred
concat

concat

concat

<CHAR, c>

unit <*>
starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

parse tree for a regular expression

input: a.b | c*

union

union <|>

starred
concat

concat

concat

<CHAR, c>

unit <*>
starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

abstract syntax tree

<|>

<.>

<a>

<*>

<c>

parse tree for a regular expression

input: a.b | c*

abstract syntax tree • regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

<|>

<.>

<a>

<*>

<c>

parse tree for a regular expression

input: a.b | c*

abstract syntax tree • regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

<|>

<.>

<a>

<*>

<c>

relhs

relhs rerhs

rerhs

restarred

parse tree for a regular expression

input: a.b | c*

abstract syntax tree • regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

<|>

<.>

<a>

<*>

<c>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

parse tree for a regular expression

input: a.b | c*

abstract syntax tree

• Check homework code to
see AST construction

• Question: given a regular
expression RE, how check
if a string is in the
language?

• parsing with derivatives!

<|>

<.>

<a>

<*>

<c>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

Language Derivatives Examples

• L = {“aaa”, “ab”, “ba”, “bba”}

• 𝛿a (L) = {“aa”, “b”}

• 𝛿aa (L) = {“a”}

• 𝛿b (L) = {“a”, ”ba”}

• 𝛿ba (L) =

Language Derivatives Examples

• L = {“aaa”, “ab”, “ba”, “bba”}

• 𝛿a (L) = {“aa”, “b”}

• 𝛿aa (L) = {“a”}

• 𝛿b (L) = {“a”, “ba”}

• 𝛿ba (L) = {𝜀}

Regular expressions are closed under derivatives

• Given a regular expression re, any derivative of re is also a regular
expression

• Let’s try some!

Regular expressions are closed under derivatives

• re = “a”
L(re) = {“a”}

• 𝛿a(re) = “”

• 𝛿b(re) = None

Regular expressions are closed under derivatives

• re = “a”

• 𝛿a(re) = {𝜀}

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = “a | b”
L = {“a”, “b”}

• 𝛿a(re) = “”

• 𝛿b(re) = “”

Regular expressions are closed under derivatives

• re = “a | b”

• 𝛿a(re) = {𝜀}

• 𝛿b(re) = {𝜀}

Regular expressions are closed under derivatives

• re = “a.a | a.b”
L = {“ab”, “aa”}

• 𝛿a(re) = “b | a”

• 𝛿b(re) = None

Regular expressions are closed under derivatives

• re = “a.a | a.b”

• 𝛿a(re) = “a | b”

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = “(a.b.c)*”
L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = “b.c.(a.b.c)*”

𝛿a(L) = {“bc”, “bcabc”, “bcabcabc” …}

Regular expressions are closed under derivatives

• re = “(a.b.c)*”

• 𝛿a(re) = “b.c.(a.b.c)*”

What is a method for computing the derivative?

Consider the base cases

• 𝛿c (re) = match re with:

• {}
return {}

• {𝜀}
return {}

• “a” (single character)
if “a” == c then return {𝜀}
else return {}

• regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if 𝜀 in relhs then 𝛿c(rerhs) else {}

• regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)
Example:

re = “a.a | a.b”

𝛿a(re) = “a | b”

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• restarred*
return 𝛿c(restarred) . restarred*

Example:

re = “(a.b.c)*”

𝛿a(re) = “b.c.(a.b.c)*”

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if 𝜀 in relhs then 𝛿c(rerhs) else {}

Example:

re = “a.b”

𝛿a(re) = “b”

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if 𝜀 in relhs then 𝛿c(rerhs) else {}

Example:

re = “(a.c)*.a.b”

𝛿a(re) = “c.(a.c)*.a.b | b”

Nullable operator

• NULL(re) =
if 𝜖 ∈ 𝑟𝑒 then: {𝜀}
else: {}

Nullable operator

• NULL(re) =
if 𝜖 ∈ 𝑟𝑒 then: {𝜀}
else: {}

implement over a RE abstract syntax tree
• regular expression =

|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

<|>

<.>

<a>

<*>

< 𝜀 >

What is a method for computing NULL?

Consider the base cases

• NULL(re) = match re with:

• {}
return {}

• {𝜀}
return {𝜀}

• “a” (single character)
return {}

• regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

return NULL(relhs) | NULL(rerhs)

• restarred*
return {𝜀}

• relhs . rerhs
return NULL(relhs) . NULL(rerhs)

• regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if 𝜀 in relhs then 𝛿c(rerhs) else {}

• regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

NULL(relhs) . 𝛿c(rerhs)

• regular expression =
|{}
| 𝜀
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re) 𝛿s(re)

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. 𝜀 ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

NULL(𝛿s(re)) == {𝜀}

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. 𝜀 ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

If this is true,
Then re matches s

𝛿s(re)

Code overview

On to Module 2!
Optimizations and flow
analysis

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

Where most
optimizations
and flow analysis
happens!

On to Module 2!
Optimizations and flow
analysis

Intermediate representations

• Intermediate step between human-accessible programming
languages and horrible machine ISAs

• Ideal for analysis because:
• More regularity than high-level languages (simple instructions)
• Less constraints than ISA languages (virtual registers)
• Machine-agnostic optimizations:
• See godbolt example

x = y + z;
w = y + z;

x = y + z;
w = x;

Different IRs

Many different IRs, each have different purposes

• Trees
• Abstract syntax trees
• Good for instruction scheduling

• Textual
• 3 address code, e.g. LLVM IR
• Good for local value numberings, removing redundant expressions

• Graphs
• Control flow graphs
• Good for data flow analysis

Abstract Syntax Trees

• Remember the expression parse tree

Operator Name Productions

+,- Expr : Expr + Term
| Expr - Term
| Term

*,/ Term : Term * Pow
: Term / Pow
| Pow

^ Pow : Factor ^ Pow
| Factor

() Factor : (Expr)
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

Abstract Syntax Trees

• Remember the expression parse tree input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

-

2 3

4-

Much more compact!

Abstract Syntax Trees

• Remember the expression parse tree input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

-

2 3

4-

Much more compact!

nodes are operators

nodes are
production

rules

Abstract Syntax Trees

• Easier to see bigger trees, e.g. quadratic formula:

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Thanks to Sreepathi Pai for the example idea!

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

3 Address IR

Powerful IR
• Close to machine instructions
• Uses virtual registers

• All instructions are of the form:

result = op1 OP op2

Special instructions take 1 op

result = load(op1)

Convert this code to 3 address code

post-order traversal, creating virtual
registers

Convert this code to 3 address code

post-order traversal, creating virtual
registers

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

can be done in parallel!

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

can be done in parallel!

Can be hoisted!

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

should we hoist this one?

Power of IRs

• We’ve shown 3 different IRs:
• AST
• 3 address code
• DDG

• Converting between them allowed different types of code reasoning

Next lecture

• More optimizations for each IR

• AST:
• Tree balancing for more instruction-level scheduling

• Three address code:
• Local value numbering for redundant expression pruning

• Control flow graphs:
• to expand the range of analysis

Bonus: From AST to a stack virtual
machine:

A common IR for java bytecode and web
assembly.

Easy to implement (can be done
completely at the parser)

hard to analyze…

5

4

…
unlimited virtual stack

Bonus: From AST to a stack virtual
machine:

5

4

push 6

…

Bonus: From AST to a stack virtual
machine:

5

4

6

push 6

…

Bonus: From AST to a stack virtual
machine:

5

4

6

…

add

Bonus: From AST to a stack virtual
machine:

11

4

add

…

Bonus: From AST to a stack virtual
machine:

11

4

…

mult

Bonus: From AST to a stack virtual
machine:

44

mult

…

Bonus: From AST to a stack
virtual machine:

push b;
negate;
push b;
push b;
mult;
push 4;
push a;
mult;
push c
mult;
minus;
sqrt;
push 2;
push a;
mult;
divide;
assign x;

Bonus: From AST to a stack
virtual machine:

