CSE211: Compiler Design

Oct. 15, 2020

 Topic: Review of parsing with
derivatives and IRs * 5. (re), where re is:

b re@. L@m
 Questions: O (reys) - reps |

if € in re,, then & (re),) else {}
Questions/comments about
derivatives and readings?

Announcements

e Start of module 2
* but with some review of parsing with derivatives

* Homeworks:
* Homework 2 will be posted on Oct. 22
* Homework 1 is due on Oct. 29

* Hopefully you have started and can come to office hours or discuss on
canvas!

Homework notes

* in PLY, production rules cannot span multiple lines (unless it is a new
option)

* there is a nonassoc option for associativity. When might we use that?

e What does C do?

e (1 ==0) false
* (1==0==0) true

CSE211: Compiler Design

Oct. 15, 2020

 Topic: Review of parsing with
derivatives and IRs * 5. (re), where re is:

b re@. L@m
 Questions: O (reys) - reps |

if € in re,, then & (re),) else {}
Questions/comments about
derivatives and readings?

Regular expressions recursive definition

regular expression =

[{}

[{}

[“a” (single character)
/ relhs \/ rerhs

[reps . s

/ r estarred *

Regular expressions recursive definition

regular expression =

5{;8} et
| “a” (single character) re = {ef
[reps \[regs re ="a”

[rejps . réps
*
/ r estarred

Regular expressions recursive definition

regular expression =

; {; } re = “a.b”
€

[“a” (single character)

/ relhs \/ rerhs

/ r elhs . r e;hs

/ r estarred

Regular expressions recursive definition

regular expression =

/{} re - I/a.bll
[{€})
[“a” (single character) -
/ reps \/ reyps F€ips - I€prps

/ F€ips - r e;hs / \

/ r estarred

parse tree for a regular expression

input: a.b | c*

m

| union : union \| concat
| concat
concat : concat . starred
| starred
* starred : starred *
| unit
() unit : (union)

| CHAR

parse tree for a regular expression

input: a.b | c*

Operator m Productions union <[> concat

| union : union \| concat concat

| concat / /\ starred
concat : concat . starred concat <.> starred /\

| starred | \. unit s
* starred : starred * starred unit ’

| unit | | <CHAR, c>
() unit : (union) unit <CHAR ,b>

| CHAR |

<CHAR, a>

parse tree for a regular expression

input: a.b | c*

union
abstract syntax tree union <|> concat

<|> concat

/\ / /\ starred
<> <*> concat <.> starred /\

I \ unit <*>

unit
<c> starred ‘ ’
<CHAR, c>

unit

<CHAR, a>

<a>

<CHAR ,b>

parse tree for a regular expression

input: a.b | c*

abstract syntax tree * regular expression =

[{}
<|> / &E
T | a (single character)
-2 <> [reps [reqps
<a>/ \ / reips - I€rps

*
¢ / r estarred

parse tree for a regular expression

input: a.b | c*

abstract syntax tree * regular expression =

[{}
réips <I> /8
o | a (single character)
e <> [reys | reg,
ré s F€rhs S rns
<a>/ \ Estorred / reips - I€rps

*
<> / r estarred

parse tree for a regular expression

input: a.b | c*

* reqular expression =

[{}
[€

[a (single character)
/ reps / rehs

I€starred / rEIhS o rerhs
x
/ F€starred

each node is
also a regular expression!

abstract syntax tree

parse tree for a regular expression

input: a.b | c*

abstract syntax tree

each node is
also a regular expression!

e Check homework code to
see AST construction

* Question: given a reqgular
expression RE, how check
if a string is in the
language?

* parsing with derivatives!

Language Derivatives Examples
° L {aaall {4 bll Ilball Ilbball}
° 50 (L) - {Ilaalj Ilbll}

* 0o (L) =1{"a"}

° 5b (L) {Il V4 Ilball}

° 5ba (L) =

Language Derivatives Examples
o | = {”aaa’ﬁ ”(Jb’: ”ba’j ”bba”}
° 50 (L) — {Ilaa/j //b//}

* 0gq (L) = {"a”}

° 5b (L) — {//a/j //ba//}

* 5ba (L) = {€}

Regular expressions are closed under derivatives

* Given a regular expression re, any derivative of re is also a regular
expression

e Let’s try some!

Regular expressions are closed under derivatives

", 7’

*re=4a

L(re) = {"a”}
* O4(re) ="

* d,(re) = None

Regular expressions are closed under derivatives

Regular expressions are closed under derivatives

re="a[b”
L - {I/alj Ilbll}

° 5a(re) - awn

° 5b(re) - own

Regular expressions are closed under derivatives
re="a[b”
* Oq(re) = {€}

* dy(re) = {e}

Regular expressions are closed under derivatives

*re="0.a/a.b”
L — {Ilablj I/aall}

* O4(re)="b [a”

* d,(re) = None

Regular expressions are closed under derivatives

*re="0.a[a.b”
* O4(re)="a [b”

* 0y(re) = {}

Regular expressions are closed under derivatives

* re = “(a.b.c)*”
L={" "abc”, “abcabc”, “abcabcabc” ...}

d,(re) = “b.c.(a.b.c)”

0,(L) ={“bc”, “bcabc”, “bcabcabc” ...}

Regular expressions are closed under derivatives
* re = “(a.b.c)*”

d,(re) = “b.c.(a.b.c)”

What is a method for computing the derivative?

Consider the base cases

* reqular expression =

* 0, (re) = match re with: [{}
| €
. 0 o | a (single character)
return [re,. | re,,.
C e} / r€ps - I'€rps
return {} / r€starred *

* “a” (single character)
if “@” == c then return {&}
else return {}

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if €in re, then o [(re,.) else {}

* reqular expression =

[{}

[€

[a (single character)
/ r elhs / r erhs

/ reips - e pps

/ F€starred *

Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

*re re
lhs / rhs Exam p le:

return 8 (re,) | 6, (re.)
re="a.a [a.b”

O,re)="a | b”

Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

°re *
starred Exam p le:

>k
return 0 (réqigrreq) - M€starred

re = “(a.b.c)*”

o,(re) = “b.c.(a.b.c)*”

Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* rey.re
lhs rhs 5 Exam p le:
return o(rey;) - req s |

if € in re, then 6 (re,,) else {} re = “a.b”

d,(re) = “b”

Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

°* re,..re
lhs rhs 5 Exam p le:
return JAreps) . req |

if € in rey, then 8(re,) else {j | re = "(a.c)%.a.b”

o,(re) = “c.(a.c)*.a.b [b”

Nullable operator

* NULL(re) =
if € € re then: {&}
else: {}

Nullable operator

* NULL(re) =
if € € re then: {&}
else: {}
* regular expression =
implement over a RE abstract syntax tree /{}
<|> / &
T [a (single character)
<> <*> / rens / re ps
<a>/ \ / r€ps - I'prps

x
<e> / r estarred

What is a method for computing NULL?

Consider the base cases
* reqular expression =

* NULL(re) = match re with: [{}
[€
e) | a (single character)
return {} / réps / ré ps
/ r€ps - I€pps
* {&} / r€starred *
return {&}

* “a” (single character)
return {}

What is a method for computing NULL?

Consider the recursive cases:

* reqular expression =

* NULL(re) = match re with: [{}
[€
reps | reps | a (single character)
return NULL(re,,.) | NULL(re,;,) [rey. | re,,.
/ r elhs . I erhs
* re * | re "
starred ——

return {€}

*r elhs T erhs

return NULL(re;,) . NULL(re,;)

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if € in re, then o (re,,.) else {}

* reqular expression =

[{}

[€

[a (single character)
/ r elhs / r erhs

/ reips - e pps

/ F€starred *

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

¢ relhs / rerhs
return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

NULL(I'e/hS) . Sc(rerhs)

* reqular expression =

[{}

[€

[a (single character)
/ r elhs / r erhs

/ reips - e pps

/ F€starred *

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’)
Lire)={..s..}

L(6. (re)) ={..s[1:]..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re)) = 5c1,c2 (I’E)

Lire)={..s..}

L(5C1 (re)) = { 5[1] } L(5C1,C2 (re)) = { 5[2] }

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re)) = 5c1,c2 (I’E) 55(I’€)

Lire)={..s..}

L(6. (re)) ={.s[1:]..} L(6c1,co (re)) ={.. s[2:] ..} L(8(re)) ={.. € ..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

5c1 (I’ E’)

L(6. (re)) ={..s[1:]..}

6c2 (5c1 (re)) = 5c1,c2 (I’E)

L(5c1,c2 (re)) = { 5[2-'] }

dy(re)

L(8s(re)) ={.. € ..}

If this is true,
Then re matches s

NULL(S6(re)) == {€}

Code overview

On to Module 2!
Optimizations and flow

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)

On to Module 2!
Optimizations and flow

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)

Where most
optimizations
and flow analysis
happens!

Intermediate representations

* Intermediate step between human-accessible programming
languages and horrible machine ISAs

* |deal for analysis because:
* More regularity than high-level languages (simple instructions)
* Less constraints than ISA languages (virtual registers)
* Machine-agnostic optimizations:
* See godbolt example

+ +
N N
g
I
X

g
|
K

Different IRs

Many different IRs, each have different purposes

* Trees
* Abstract syntax trees
* Good for instruction scheduling

e Textual
e 3 address code, e.g. LLVM IR
e Good for local value numberings, removing redundant expressions

* Graphs
e Control flow graphs
e Good for data flow analysis

Abstract Syntax Trees

« Remember the expression parse tree ilnput: 2-3-4

w Mexpr\

+,- Expr : Expr + Term

Vi

| Expr - Term expr <MINUS> term

| Term /l\
*,/ Term : Term * Pow

: Term / Pow expr <MINUS> term factor

| Pow f |
factor
A Pow : Factor * Pow term ’ <NUM, 4>

| Factor |

() Factor - (Expr) factor <NUM, 3>
| NUM ‘

<NUM, 2>

Abstract Syntax Trees

* Remember the expression parse tree ilnput: 2-3-4

] expr
] 4 expr <MINUS> term
2 3 expr <MINUS> term factor
term factor <NUM. 45
Much more compact! | ’ ,
factor <NUM, 3>

<NUM, 2>

Abstract Syntax Trees

* Remember the expression parse tree lnput: 2-3-4

nodes are operators Mexpr\
4 expr <M|NUS> term
2 3 expr <MINUS> term factor
nodes are
production fact
rules actor <NUM, 4>
Much more compact! ’
factor <NUM, 3>

<NUM, 2>

Abstract Syntax Trees

 Easier to see bigger trees, e.g. quadratic formula:

_ 2 __
T — b__\/2b dac
a

X =(-b-sqrt(b*b-4 *a*c))/(2*%a)

Thanks to Sreepathi Pai for the example idea!

X =(-b-sqrt(b*b -4 *a*c))/(2*%a)

3 Address IR

Powerful IR
* Close to machine instructions
* Uses virtual registers

e All instructions are of the form:

result = opl OP op2

Special instructions take 1 op

result = load(opl)

Convert this code to 3 address code

post-order traversal, creating virtual
registers

Convert this code to 3 address code

post-order traversal, creating virtual

registers

r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;
X = r8;

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;

What now?

We can make a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;

What now?

We can make a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

What now?

We can make a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

What now?

We can make a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

What now?

We can make a data-dependency graph (DDG) 0 e
r0 = neg(b);

rl = b * b; 0

r2 = 4 * a;

r3 =1r2 * C; Q e

r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; ° a
r7 = 2 * a;

r8 =

X = r8;

r6 / r7; °
(2

What now? Q
We can make a data-dependency graph (DDG) 0 e
r0 = neg(b);

rl = b * b; 0

r2 = 4 * a;

r3 =1r2 * C; Q e

r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; ° a
r7 = 2 * a;

r8 =r6 / ri; °

X = r8;

What now? r2

We can make a data-dependency graph (DDG)

rl Q
i(l) i geg(]g:; can be done in parallel! @
r2 = 4 * a;
r3 = r2 * c; ° °
r4d = rl — r3;
r5 = sqrt(r4); ° 7
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / ri; °
X = r8;

What now? r2

We can make a data-dependency graph (DDG)

rl Q

i(l) i geg(]g:; can be done in parallel! @
r2 = 4 * a;
r3 = r2 * c; ° °
r4d = rl — r3;
r5 = sqrt(réd); ° r7
r6 = r0 — r5;
r/7 = 2 * a: :

/ Can be hoisted!
r8 _ r6 / r7; d e Nnoiste °
X = r8;

What now? @

We can make a data-dependency graph (DDG) '3

r0 = neg(b);
rl b * b;

r2 4 * ay should we hoist this one?
r3 = r2 * c; Q °

r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; a
r7 = 2 * a;

r8 =r6 / ri;

X = r8;

Power of IRs

 We’ve shown 3 different IRs:
* AST
e 3 address code
* DDG

* Converting between them allowed different types of code reasoning

Next lecture

* More optimizations for each IR

 AST:

* Tree balancing for more instruction-level scheduling

* Three address code:
* Local value numbering for redundant expression pruning

e Control flow graphs:
* to expand the range of analysis

Bonus: From AST to a stack virtual
machine:

A common IR for java bytecode and web
assembly.

Easy to implement (can be done
completely at the parser)

hard to analyze...

unlimited virtual stack

Bonus: From AST to a stack virtual
machine:

push 6

Bonus: From AST to a stack virtual
machine:

push 6

Bonus: From AST to a stack virtual
machine:

add

Bonus: From AST to a stack virtual
machine:

add

11

Bonus: From AST to a stack virtual
machine:

mult

11

Bonus: From AST to a stack virtual
machine:

mult

44

Bonus: From AST to a stack
virtual machine:

Bonus: From AST to a stack
virtual machine:

push b;
negate;
push b;
push b;
mult;
push 4;
push a;
mult;
push c
mult;
minus;
sqrt;
push 2;
push a;
mult;
divide;
assign Xx;

