
CSE211: Compiler Design
Nov. 17, 2020

• Topic: SMP parallelism
• Nesting orders
• Reordering nestings
• Irregular parallelism

• Discussion questions:
• What is memory locality and why does it

matter?
• What do you do if parallel threads do not

have the same amount of work?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Announcements

• Midterm is out. Clarification questions are posted as discussions on
Canvas. Forgot to publish...
• Due on Thursday.

• HW3 is released. Due Dec. 4

• HW1 is graded: good job everyone!

• Paper/projects proposals due Nov. 24

CSE211: Compiler Design
Nov. 17, 2020

• Topic: SMP parallelism
• Nesting orders
• Reordering nestings
• Irregular parallelism

• Discussion questions:
• What is memory locality and why does it

matter?
• What do you do if parallel threads do not

have the same amount of work?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

From last week:

• We want to find loops that are safe to parallelize

• Condition: outer loop iterations must be independent: they can
execute in any order and provide the same result
• using a constraint solver to detect write-write conflicts and read-write

conflicts

• new: push/pop Z3 commands: this can save the state of the solver.

Example

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128

read-write conflict check
ix % 64 == iy + 64

write-write conflict check
ix % 64 == iy % 64

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x, i1x .. iNx) == write_index(i0y, i1y, ... iNy)

4. Do the same for write-read conflicts

DOALL Loops

• These loops are called DOALL loops

• Once found, they can be passed to additional passes to fine-tune the
parallelism (locality, number of threads, scheduling etc.)

• This lecture: nesting order and scheduling

Transforming Loops

• Locality is key for good parallel performance:

Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[2];

temporal locality

Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[3];

spatial locality

how far apart can memory locations be?

Transforming Loops

• Locality is key for good parallel performance:

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

good data locality: cores will
spend most of their time accessing
private caches

Transforming Loops

• Locality is key for good parallel performance:

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Bad data locality: cores will
pressure and thrash shared memory
resources

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional
arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional
arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[0,0];
x2 = a[0, 1];

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled row major: still has locality

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

How multi dimensional
arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled
column
major:
Bad locality

How multi dimensional arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[0,0];
x2 = a[1, 0];

How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

How multi dimensional
arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

unrolled
column
major:
good locality

How much does this matter?

for (int x = 0; x < x_size; x++) {
for (int y = 0; y < y_size; y++) {

a[x,y] = b[x,y] + c[x,y];
}

}

for (int y = 0; y < y_size; y++) {
for (int x = 0; x < x_size; x++) {

a[x,y] = b[x,y] + c[x,y];
}

}

which will be faster?
by how much?

Demo

How to reorder loop nestings?

• For a DOALL loop, if loop bounds are independent, they can simply be
re-ordered.

• If they are dependent...

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

but iteration variables are
dependent

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

but iteration variables are
dependent

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y

Fourier-Motzkin elimination:

• Given a system of inequalities with N variables, reduce it to a system
with N - 1 variables.

• A system of inequalities describes an N-dimensional polyhedron.
Produce a system of equations that projects the polyhedron onto an
N-1 dimensional space

Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y

Fourier-Motzkin elimination:

• To eliminate variable 𝑥!:
For every pair of lower bound 𝐿! and upper bound 𝑈! on 𝑥!, create:

𝐿! ≤ 𝑥! ≤ 𝑈!
Then simply remove 𝑥! :

𝐿! ≤ 𝑈!

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= 5
0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= 5
0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x

loop constraints without y:

x >= 0
x <= 7

Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y

Reording Loop bounds:

• Given a new order: 𝑥", 𝑥#, 𝑥$, … 𝑥%

• For each variable 𝑥! : perform Fourier-Motzkin elimination to
eliminate any variables that come after 𝑥! in the new order.

• Instantiate loop conditions for 𝑥!, potentially using max/min
operators

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= 5
y <= x

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= 5
y <= x

Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)

Example:

for (x = 0; x <= 7; x++) {
for (y = 0; y <= min(x,5); y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)

x

y

Reordering loop bounds

• only works if loop increments by 1; assumes a closed polyhedron

• best performance when array indexes are simple:
• e.g.: a[x,y]
• harder with, e.g.: a[x*5+127, y+x*37]
• There exists schemes to automatically detect locality. Reach chapter 10 of the

Dragon book

• compiler implementation allows exploration and auto-tuning

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!

Adding loop nestings

• Add two outer loops for both x and y

for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}

Demo

Moving on...

Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute.

• Threads with shorter tasks are underutilized.

Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute.

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = 0; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

example: regular (or embarrassingly)
parallelism:
each x iteration performs the same
amount of work

Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute.

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

irregular (or unbalanced) parallelism:
each x iteration performs different
amount of work.

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = *
"#$

%&'(

𝑛

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = *
"#$

%&'(

𝑛

Calculate work done by second thread:

t2_work = *
"#$

%&'(/*

𝑛

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = *
"#$

%&'(

𝑛

Calculate work done by second thread:

t2_work = *
"#$

%&'(/*

𝑛

Calculate work work done by first thread:

t1_work = total_work − t2_work

Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t2_work = 496
t1_work = 1520

t1 does ~3x more work than t2

Only provides ~1.3x speedup

Calculate how much total work:

total_work = *
"#$

%&'(

𝑛

Calculate work done by second thread:

t2_work = *
"#$

%&'(/*

𝑛

Calculate work work done by first thread:

t1_work = total_work − t2_work

Potential solution:
Have T1 do only ¼ of the iterations
Gives a better speedup of 1.77x

Not a feasible solution because often times load
imbalance is not given by a static equation on loop
bounds!

Where does irregular parallelism show up?

from “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, OSDI 2012

from “PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs”,
OSDI 2012

• Vertex programming model
iterates over each node in
parallel.

• Each node pulls in values
from neighbors

• Similar to flow analysis!

Sparse Neural Nets

from: “A PROGRAMMABLE APPROACH TO
MODEL COMPRESSION”. arxiv 2019.

How can we deal with load imbalance?

• Great research question! Changes per domain/architecture/input etc.

Work stealing

• Threads dynamically get assigned to
loop iterations

• Two approaches:
• global (pessimistic)
• local (optimistic)

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0 1 2 3 4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0 1 2 3 4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0 1

2 3 4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0

2 3 4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0

2 3 4 5 6 7 SIZE -1

core 1core 0

Dynamically take the next iteration

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0 2

3 4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0

3 4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0 3

4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

3

4 5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

34

5 6 7 SIZE -1

core 1core 0

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

34

5 6 7 SIZE -1

core 1core 0

Straightforward implementation

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

global int x;
for (i = thread_id; i < SIZE; i = atomic_increment(x)) {
// dynamic work based on i

}

34

5 6 7 SIZE -1

core 1core 0

Straightforward implementation
downsides: contentious atomic operation for every task

poor cache locality from the work list

Work stealing

• Global worklist: threads take tasks (iterations) dynamically

global int x;
for (i = thread_id; i < SIZE; i = atomic_increment(x)) {
// dynamic work based on i

}

34

5 6 7 SIZE -1

core 1core 0

Straightforward implementation
downsides: contentious atomic operation for every task

poor cache locality from the work list

Work stealing
• Local worklists: threads optimistically are assigned an even sized

chunk of work. Threads that finish early steal from unfinished
threads

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

0 1 2 3 4 5

core 1core 0

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

0 1 2 3 4 5

core 1core 0

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2

3

4 5

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2 4 5

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2

4

5

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2 5

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2

5

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2

worklist 0 worklist 1

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1 2

worklist 0 worklist 1

steal from worklist 0

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1

2

worklist 0 worklist 1

steal from worklist 0

Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1

2

worklist 0 worklist 1

steal from worklist 0

Implementation more difficult. Requires efficient
concurrent data-structures, stealing strategies, etc.

Pros: less contention, better cache locality

Work stealing

• Well-studied, available (e.g. OpenMP)

• Requires fine-grained synchronization (concurrent data-structures, or
atomic read-modify-write)

• Demo

Next class:

• Inspect/Execute load balancing

• Decoupled Access Execute

