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• Topic: SMP parallelism
• Nesting orders
• Reordering nestings
• Irregular parallelism

• Discussion questions:
• What is memory locality and why does it 

matter?
• What do you do if parallel threads do not 

have the same amount of work?
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Announcements

• Midterm is out. Clarification questions are posted as discussions on 
Canvas. Forgot to publish... 
• Due on Thursday.

• HW3 is released. Due Dec. 4

• HW1 is graded: good job everyone!

• Paper/projects proposals due Nov. 24
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From last week:

• We want to find loops that are safe to parallelize

• Condition: outer loop iterations must be independent: they can 
execute in any order and provide the same result
• using a constraint solver to detect write-write conflicts and read-write 

conflicts

• new: push/pop Z3 commands: this can save the state of the solver.



Example

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128

read-write conflict check
ix % 64 == iy + 64

write-write conflict check
ix % 64 == iy % 64



General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds: 
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts: 
check: write_index(i0x, i1x .. iNx) == write_index(i0y, i1y, ... iNy)

4. Do the same for write-read conflicts



DOALL Loops

• These loops are called DOALL loops

• Once found, they can be passed to additional passes to fine-tune the 
parallelism (locality, number of threads, scheduling etc.)

• This lecture: nesting order and scheduling



Transforming Loops

• Locality is key for good parallel performance:
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Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[3];

spatial locality

how far apart can memory locations be?



Transforming Loops

• Locality is key for good parallel performance:
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good data locality: cores will
spend most of their time accessing 
private caches



Transforming Loops

• Locality is key for good parallel performance:

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM

Bad data locality: cores will
pressure and thrash shared memory 
resources



How multi dimensional arrays are stored:
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How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[0,0];
x2 = a[0, 1];
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unrolled row major: still has locality



How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];



How multi dimensional 
arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled
column 
major:
Bad locality



How multi dimensional arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[0,0];
x2 = a[1, 0];



How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];



How multi dimensional 
arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

unrolled
column 
major:
good locality



How much does this matter?

for (int x = 0; x < x_size; x++) {
for (int y = 0; y < y_size; y++) {

a[x,y] = b[x,y] + c[x,y];
}

}

for (int y = 0; y < y_size; y++) {
for (int x = 0; x < x_size; x++) {

a[x,y] = b[x,y] + c[x,y];
}

}

which will be faster?
by how much?

Demo



How to reorder loop nestings?

• For a DOALL loop, if loop bounds are independent, they can simply be 
re-ordered.

• If they are dependent...



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}
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bad nesting order for
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Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

but iteration variables are 
dependent



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

but iteration variables are 
dependent

loop constraints
y >= 0
y <= 5
x >= y
x <= 7



Example:

loop constraints
y >= 0
y <= 5
x >= y
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System with N variables can be viewed as an N
dimensional polyhedron
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Fourier-Motzkin elimination:

• Given a system of inequalities with N variables, reduce it to a system 
with N - 1 variables.

• A system of inequalities describes an N-dimensional polyhedron. 
Produce a system of equations that projects the polyhedron onto an 
N-1 dimensional space 



Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron
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Fourier-Motzkin elimination:

• To eliminate variable 𝑥!:
For every pair of lower bound 𝐿! and upper bound 𝑈! on 𝑥!, create: 

𝐿! ≤ 𝑥! ≤ 𝑈!
Then simply remove 𝑥! :

𝐿! ≤ 𝑈!



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:
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Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x

loop constraints without y:

x >= 0
x <= 7



Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y



Reording Loop bounds:

• Given a new order: 𝑥", 𝑥#, 𝑥$, … 𝑥%

• For each variable 𝑥! : perform Fourier-Motzkin elimination to 
eliminate any variables that come after 𝑥! in the new order.

• Instantiate loop conditions for 𝑥!, potentially using max/min 
operators



Example:
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for (x = y; x <= 7; x++) {
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Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)



Example:

for (x = 0; x <= 7; x++) {
for (y = 0; y <= min(x,5); y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)

x

y



Reordering loop bounds

• only works if loop increments by 1; assumes a closed polyhedron

• best performance when array indexes are simple:
• e.g.: a[x,y]
• harder with, e.g.: a[x*5+127, y+x*37]
• There exists schemes to automatically detect locality. Reach chapter 10 of the 

Dragon book

• compiler implementation allows exploration and auto-tuning



Adding loop nestings

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶
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Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!



Adding loop nestings

• Add two outer loops for both x and y

for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}
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Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}

Demo



Moving on...



Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute. 

• Threads with shorter tasks are underutilized.
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• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute. 

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = 0; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

example: regular (or embarrassingly) 
parallelism:
each x iteration performs the same 
amount of work



Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute. 

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

irregular (or unbalanced) parallelism:
each x iteration performs different 
amount of work.



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}
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Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = *
"#$

%&'(

𝑛

Calculate work done by second thread:

t2_work = *
"#$

%&'(/*

𝑛

Calculate work work done by first thread:

t1_work = total_work − t2_work



Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t2_work = 496
t1_work = 1520

t1 does ~3x more work than t2

Only provides ~1.3x speedup

Calculate how much total work:

total_work = *
"#$

%&'(

𝑛

Calculate work done by second thread:

t2_work = *
"#$

%&'(/*

𝑛

Calculate work work done by first thread:

t1_work = total_work − t2_work

Potential solution:
Have T1 do only ¼ of the iterations
Gives a better speedup of 1.77x

Not a feasible solution because often times load 
imbalance is not given by a static equation on loop 
bounds!



Where does irregular parallelism show up?



from “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, OSDI 2012



from “PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs”, 
OSDI 2012

• Vertex programming model 
iterates over each node in 
parallel. 

• Each node pulls in values 
from neighbors 

• Similar to flow analysis!



Sparse Neural Nets

from: “A PROGRAMMABLE APPROACH TO 
MODEL COMPRESSION”. arxiv 2019. 



How can we deal with load imbalance?

• Great research question! Changes per domain/architecture/input etc.



Work stealing

• Threads dynamically get assigned to 
loop iterations

• Two approaches: 
• global (pessimistic) 
• local (optimistic)
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}
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Work stealing

• Global worklist: threads take tasks (iterations) dynamically 

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

0

2 3 4 5 6 7 SIZE -1

core 1core 0

Dynamically take the next iteration
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Work stealing

• Global worklist: threads take tasks (iterations) dynamically 

global int x;
for (i = thread_id; i < SIZE; i = atomic_increment(x)) {
// dynamic work based on i

}

34

5 6 7 SIZE -1

core 1core 0

Straightforward implementation
downsides: contentious atomic operation for every task

poor cache locality from the work list



Work stealing

• Global worklist: threads take tasks (iterations) dynamically 

global int x;
for (i = thread_id; i < SIZE; i = atomic_increment(x)) {
// dynamic work based on i

}

34

5 6 7 SIZE -1

core 1core 0

Straightforward implementation
downsides: contentious atomic operation for every task

poor cache locality from the work list



Work stealing
• Local worklists: threads optimistically are assigned an even sized 

chunk of work. Threads that finish early steal from unfinished 
threads
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Work stealing

• local worklists: divide tasks into different worklists for each thread

for (x = 0; x < 6; x++) {
// dynamic work based on x

}

core 1core 0

0

1

2

worklist 0 worklist 1

steal from worklist 0

Implementation more difficult. Requires efficient
concurrent data-structures, stealing strategies, etc.

Pros: less contention, better cache locality



Work stealing

• Well-studied, available (e.g. OpenMP)

• Requires fine-grained synchronization (concurrent data-structures, or 
atomic read-modify-write)

• Demo



Next class:

• Inspect/Execute load balancing

• Decoupled Access Execute


