
CSE211: Compiler Design
Nov. 12, 2020

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking
• Reordering nestings

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Announcements

• Midterm is posted. Please write your answers on a separate piece of
paper. You can do it on the computer, by hand, or a hybrid. As long as
I can read your answers

• Homework 3 is posted. You have 3 weeks to complete.

• Homework 2 is Due today. I will collect early tomorrow morning.

Paper/Project proposals

• Please start thinking about these.
• Message me for recommendations
• Tell me what you’re interested in so we can find a good fit!

• Proposals due on Nov. 24

• Midterm is a good indicator for how the final will be.

CSE211: Compiler Design
Nov. 12, 2020

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking
• Reordering nestings

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs.
• Intel delaying 7nm chips. Apple has a 5nm. Some roadmaps project up to 3nm

• Chips are not increasing in raw frequency, and space is becoming
more valuable

Trends

How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate
delay costs limit the achievable superscalar speedup to
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2 core 3

Demo

• Vector addition

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

• Cons: difficult to program!

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Demo

• Overhead

• Safety

SMP systems are widespread

• Our server has 4 cores.
• Most workstations have more; ~32

(up to 52 Intel Xeon)
• New products: 128 core ARM

system*

• My laptop: 8 cores (symmetric)

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 2 + 4 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

SMP systems are widespread

• Our server has 4 cores.
• Most workstations have more; ~32

(up to 52 Intel Xeon)
• New products: 128 core ARM

system*

• My laptop: 8 cores (symmetric)

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 2 + 4 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the
program execution time that would be improved by parallelism

• Assumes linear speedups

By Daniels220 at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/
index.php?curid=6678551

Compiler applications

• Much like ILP: convert sequential streams of computation in to SMP
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis

SMP Parallelism in For Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and

constants*
• Loops Increment by 1

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 0; i < dim1; i++) {
for (int j = 0; j < dim3; j++) {
for (int k = 0; k < dim2; k++) {
a[i][j] += b[i][k] * c[k][j];

}
}

}

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int j = 0; j < 32; j++) {
a[3*j + 2] = c[3*j + 2 + 128];

}

substitute:
i = 3*j + 2

double check
upperbound/lowerbound

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int j = 0; j < 32; j+=1) {
a[3*j + 2] = c[(3*j + 2) + 128];

}

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}

SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed
off to another pass that can finely tune the parallelism (number of
threads, chunking, etc)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this?
• If the property doesn’t hold then there exists 2 iterations, such that if they are

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy)

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Why?

if ix iteration happens first, then
iteration iy reads an updated value.

if iy happens first, then it reads the
original value

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]**2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]**2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]**2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]**2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
write_index(ix) == write_index(iy)
write_index(ix) == read_index(iy)

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

SMT Solver

• Satisfiability Modulo Theories (SMT)
• Generalized SAT solver

• Solves many types of constraints over many domains
• Integers
• Reals
• Bitvectors
• Sets

• Complexity bounds are high (and often undecidable). In practice, they
work pretty well

SMT Solver

Microsoft Z3

• State-of-the-art

• Python bindings

• Tutorials:
• Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
• SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}

Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x, i1x .. iNx) == write_index(i0y, i1y, ... iNy)

4. Do the same for write-read conflicts

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x == i0y i1x !=i1y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x, i1x .. iNx) == write_index(i0x, i1x, ... iNy)

4. Do the same for write-read conflicts

What if we want
to parallelize
an inner loop?

Next week

• Reordering loop nestings

• irregular parallelism

