
CSE211: Compiler Design 
Nov. 12, 2020

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking
• Reordering nestings

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?
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Announcements

• Midterm is posted. Please write your answers on a separate piece of 
paper. You can do it on the computer, by hand, or a hybrid. As long as 
I can read your answers

• Homework 3 is posted. You have 3 weeks to complete.

• Homework 2 is Due today. I will collect early tomorrow morning.



Paper/Project proposals

• Please start thinking about these.
• Message me for recommendations
• Tell me what you’re interested in so we can find a good fit!

• Proposals due on Nov. 24

• Midterm is a good indicator for how the final will be. 
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K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.



• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs.
• Intel delaying 7nm chips. Apple has a 5nm. Some roadmaps project up to 3nm

• Chips are not increasing in raw frequency, and space is becoming 
more valuable

Trends



How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:



How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate 
delay costs limit the achievable superscalar speedup to 
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation


Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
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Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications
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For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1



= = = = = =

For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2
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For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2 core 3



Demo

• Vector addition



Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications

• Cons: difficult to program!
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Demo

• Overhead

• Safety



SMP systems are widespread

• Our server has 4 cores. 
• Most workstations have more; ~32 

(up to 52 Intel Xeon)
• New products: 128 core  ARM 

system*

• My laptop: 8 cores (symmetric)

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 2 + 4 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud



SMP systems are widespread

• Our server has 4 cores. 
• Most workstations have more; ~32 

(up to 52 Intel Xeon)
• New products: 128 core  ARM 

system*

• My laptop: 8 cores (symmetric)

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 2 + 4 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud
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Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the 
program execution time that would be improved by parallelism

• Assumes linear speedups



By Daniels220 at English Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/
index.php?curid=6678551



Compiler applications

• Much like ILP: convert sequential streams of computation in to SMP 
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis



SMP Parallelism in For Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and 

constants*
• Loops Increment by 1

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 0; i < dim1; i++) { 
for (int j = 0; j < dim3; j++) { 
for (int k = 0; k < dim2; k++) { 
a[i][j] += b[i][k] * c[k][j]; 

} 
} 

}
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applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int j = 0; j < 32; j++) {
a[3*j + 2] = c[3*j + 2 + 128];

}

substitute:
i = 3*j + 2

double check
upperbound/lowerbound



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int j = 0; j < 32; j+=1) {
a[3*j + 2] = c[(3*j + 2) + 128];

}

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}



SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the 
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed 
off to another pass that can finely tune the parallelism (number of 
threads, chunking, etc)



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this? 
• If the property doesn’t hold then there exists 2 iterations, such that if they are 

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the 
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from 
the location written to by another iteration.



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy) 



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy) 

Why? 
Because if 
index(ix) == index(iy) 
then:
a[index(ix)] will equal 
either loop(ix) or loop(iy) 
depending on the order



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 

Why?

if ix iteration happens first, then 
iteration iy reads an updated value.

if iy happens first, then it reads the 
original value



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;
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Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]**2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]**2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]**2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]**2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]**2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}



Automation?

• We have decent intuition about this, but if its going to be in a 
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
write_index(ix) == write_index(iy)
write_index(ix) == read_index(iy)

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)
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Automation?

• We have decent intuition about this, but if its going to be in a 
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!



SMT Solver

• Satisfiability Modulo Theories (SMT)
• Generalized SAT solver

• Solves many types of constraints over many domains
• Integers
• Reals
• Bitvectors
• Sets

• Complexity bounds are high (and often undecidable). In practice, they 
work pretty well



SMT Solver



Microsoft Z3

• State-of-the-art

• Python bindings

• Tutorials: 
• Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
• SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial


Automation?

• We have decent intuition about this, but if its going to be in a 
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]**2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!



Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}



Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]**2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64



General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}



General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds: 
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts: 
check: write_index(i0x, i1x .. iNx) == write_index(i0y, i1y, ... iNy)

4. Do the same for write-read conflicts



General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x == i0y i1x !=i1y

2. Constrain them to be inside their bounds: 
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts: 
check: write_index(i0x, i1x .. iNx) == write_index(i0x, i1x, ... iNy)

4. Do the same for write-read conflicts

What if we want 
to parallelize
an inner loop?



Next week

• Reordering loop nestings

• irregular parallelism


