
CSE211: Compiler Design
Nov. 10, 2020

• Topic: instruction-level parallelism (ILP)
• dependency graphs/chains
• loop unrolling
• reductions

• Discussion questions:
• What is instruction level parallelism?
• How can modern processors exploit ILP?

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Announcements

• Homework 2 is due Nov. 12
• One more office hour session on Wednesday
• I will do the open door sessions
• API for pycfg can be a little confusing. Please discuss on Canvas

• Midterm will be released Nov. 12 and due on Nov. 19
• Email me clarification questions, not technical questions
• Please don’t discuss with classmates

• Paper/Project proposals submitted (latest possible, preferably earlier):
Nov. 24

Resources: The Dragon Book

• This week: sections from chapter 10

• Next week: sections from chapter 11

• Book link posted on Canvas

CSE211: Compiler Design
Nov. 10, 2020

• Topic: instruction-level parallelism (ILP)
• dependency graphs/chains
• loop unrolling
• reductions

• Discussion questions:
• What is instruction level parallelism?
• How can modern processors exploit ILP?

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Instruction-level Parallelism (ILP)

• Parallelism from a single stream of instructions.
• Output of program must match exactly a sequential execution!

• Widely applicable:
• most mainstream programming languages are sequential
• most deployed hardware has components to execute ILP

• Can benefit from a combination of hardware and software scheduling

• While it can be done by hand, its better to implement in a compiler

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

two instructions can be executed in
parallel if they are independent

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Easier with:
+ within a basic block
+ using SSA form

Harder with:
- memory locations

Many times, dependencies can be
easily tracked in the compiler:

Different types of dependencies

• Data Dependence
• Control Dependence
• Memory Dependence

Data Dependency analysis from Oct. 15 lecture:

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Control dependencies

x = z + w;
if (x > 100)

a = b + c;

Instructions in different CFG nodes
have control-dependencies

x = z + w;
if (x > 100)

a = b + c;

...

Memory dependencies

a[i] = z + w;
x = a[i]

True dependence:
Read-after-write

Memory dependencies

a[i] = z + w;
x = a[i]

a[i] = z + w;
a[i] = a + b;

True dependence:
Read-after-write

Output dependence:
Write-after-write

Memory dependencies

a[i] = z + w;
x = a[i]

a[i] = z + w;
a[i] = a + b;

x = a[i]
a[i] = z + w;

True dependence:
Read-after-write

Output dependence:
Write-after-write

anti-dependence:
Write-after-read

Memory dependencies

a[i] = z + w;
x = a[i]

a[i] = z + w;
a[i] = a + b;

x = a[i]
a[i] = z + w;

True dependence:
Read-after-write

Output dependence:
Write-after-write

anti-dependence:
Write-after-read

reg_a_i = z + w;
a[i] = a + b;

x = a[i]
reg_a_i = z + w;
...
a[i] = reg_a_i;

Dependencies can be
removed

Dependencies can be
delayed

Memory dependencies

a[i] = z + w;
x = a[i]

a[i] = z + w;
a[i] = a + b;

x = a[i]
a[i] = z + w;

True dependence:
Read-after-write

Output dependence:
Write-after-write

anti-dependence:
Write-after-read

reg_a_i = z + w;
a[i] = a + b;

x = a[i]
reg_a_i = z + w;
...
a[i] = reg_a_i;

Dependencies can be
removed

Dependencies can be
delayed

All of this depends on
accurate pointer analysis!

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

instr1;instr2;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

6 cycles for 3 independent
instructions

Converges to 1 instruction per cycle

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

What if the
instructions depend on
each other?

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

9 cycles for 3 instructions

converges to 3 cycles per
instruction

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

Say instr2; and instr3;
have a control
dependence on instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

Say instr2; and instr3;
have a control
dependence on instr1;

instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

Say instr2; and instr3;
have a control
dependence on instr1;

instr1;instr2;

speculative

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

Say instr2; and instr3;
have a control
dependence on instr1;

instr1;instr2;

speculative

instr3;

speculative

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

Say instr2; and instr3;
have a control
dependence on instr1;

instr2;

speculative

instr3;

speculative

before we commit
the speculative instructions,
we check if the control
dependence was satisfied.

How can hardware execute ILP?

• Executing multiple instructions at once:

• Very Long Instruction Word (VLIW) architecture
• Multiple instructions are combined into one by the compiler

• Superscalar architecture:
• Several sequential operations are issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

It’s even more complicated

• Out-of-order execution delays dependent instructions
• Reorder buffers (RoB) track dependencies
• Load-Store Queues (LSQ) hold outstanding memory requests

What does this look like in the real world?

• Intel Haswell (2013):
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler

implementations
(BOOM)

What does this mean for compiler writers?

• We should have an abstract and parametrized performance model for
instruction scheduling (the order of instructions)

• Try not to place dependent instructions in sequence

• Above all, instructions must respect sequential semantics!

Four compiler techniques for better ILP

• Priority topological ordering

• Anticipatable expressions

• Independent for loops

• Reduction for loops

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

First, consider optimizing
for superscalar

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Label nodes with the maximum
distance to a source

1

1

1

1

2

3

4

5

6

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

number nodes with the maximum
distance to a source

1

1

1

1

2

3

4

5

6

Break ties in topological
order using this number

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

number nodes with the maximum
distance to a source

1

1

1

2

3

4

5

6

Break ties in topological
order using this number

1

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r7 = 2 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

number nodes with the maximum
distance to a source

1

1

1

2

3

4

5

6

Break ties in topological
order using this number

1

rX

2

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move indepedent
instructions as high
as possible. What about
pipelining?

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r0 = neg(b);
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r0 = neg(b);
r5 = sqrt(r4);
r7 = 2 * a;
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

final

In practice

• Some hybrid approach depending on the target

• Some approaches use a resource model that explicitly encode the
issue-width and pipeline

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all
paths that leave bx , e is evaluated

Anticipable Expressions

x = z + w;
if (x > 100) {

...
a = b + c;
...

}
else {

...
a = b + c;
...

}

x = z + w;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

Anticipable Expressions

x = z + w;
if (x > 100) {

...
a = b + c;
...

}
else {

...
a = b + c;
...

}

x = z + w;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

antExpr = {a=b+c}

Anticipable Expressions

x = z + w;
a = b + c;
if (x > 100) {

...
a = b + c;
...

}
else {

...
a = b + c;
...

}

x = z + w;
a = b + c;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

antExpr = {a=b+c}

also called ”Upward code motion”

Using Loop Unrolling to Exploit ILP

• for loops with independent chains of computation

for (int i = 0; i < SIZE; i++) {
SEQ(i);

}

where: SEQ(i) = instr1;
instr2;
...
a[i] = instrN;

and let instr(N) depends on instr(N-1)

loops only write to memory
addressed by the loop variable

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}

Saves one addition and one comparison per loop, but doesn’t help with ILP

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);
...
SEQ(i,N);
SEQ(i+1, N);

}

Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,1);
...
SEQ(i,N);
SEQ(i+1, N);

}

Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

two instructions can be pipelined, or executed
on a superscalar processor

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,1);
...
SEQ(i,N);
SEQ(i+1, N);

}

two instructions can be pipelined, or executed
on a superscalar processor

Compiler should:
* be in charge of unrolling factor
* detect such loops

Loop Unrolling for Reduction Loops

• Prior approach examined loops with independent iterations and
chains of dependent computations

• Now we will look at reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
a[0] = REDUCE(a[0], a[i]);

}

If the reduction operator is associative, we can do better!

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

36 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

consider instr1 and instr2 have a data dependence, and instrX’s are independent

instr1;
instrX0;
instrX1;
...
instr2;

independent instructions. If they overwrite the register storing instr1’s result, then it will have to
be stored to memory and retrieved before instr2

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

Solutions include using a resource model to guide the topological ordering. Highly
architecture dependent. Algorithms become more expensive

Typically doesn’t show up in basic block analysis. In loop unrolling, it will influence the
number of unrolls you do.

Priority Topological Ordering
of DDGs

r7 = 2 * a;
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Discussion

• Where is parallelism most commonly found?
• Non-numeric applications are thought to have very little. lots of:

• I/O (file, network, user),
• events,
• source needed

• numeric applications have more:
• media processing (image, video, sound)
• machine-learning (esp. inference)

• More and more, numeric applications are moving to accelerators

Modern SoC

• From David Brooks lab at
Harvard:

http://vlsiarch.eecs.harvard.
edu/research/accelerators/di
e-photo-analysis/

• Compilers will need to be
able to map software
efficiently to a range of
different accelerators

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

Current tensions

• Simple cores with accelerators/GPUs?
• Less need for pipelines, OoO, and superscalar
• Hard to port legacy code

• Complicated cores
• area/power hungry
• great for legacy code

• Where do compilers fit in?

Next week

• SPMD parallelism for loops

