
CSE211: Compiler Design
Homework 4: Parallel Schedules and DAE

Assigned: Dec. 3, 2020
Due: Dec. 14, 2020

• Read through instructions fully before beginning assignment; the testing scripts described
later can help you while developing!

• These assignments are done with Python 3; you’ll need to explicitly call python3 on the server
unless you switch it in your environment. The default python command defaults to version
2.7.

• The first two parts produce C++ files which are then compiled by clang++. Please note I
have built a debug version of clang, so compiling is probably slower than you are used to.
Please don’t be alarmed.

• This homework requires timing experiments! Please only run experiments on one thread at a
time. Before you start an experimental campaign, please run top. If more than 4 people are
running experiments (look at how much memory and CPU are being used), then wait for an
hour or so. If resources become a major constraint, we can set up a reservation system.

1 DOALL Loop Parallel Schedules
Here we will consider different ways to parallelize DOALL loops, also known as a parallel sched-
ule. Static work partitioning works well for DOALL loops where iterations take roughly the same
amount of time. When loop iterations have more variation, it helps to use dynamic scheduling,
e.g. workstealing. Dynamic strategies are further parameterized by the granularity of tasks and if
worklists are local or global. Once a loop is proven safe to parallelize, its the compilers job to pick
a parallel schedule and implement the parallelism.

Your assignment is to generate a SPMD (single program, multiple data) function that imple-
ments the following loop (given inside a function to ease your job):

void function(float *result, int * power, int size) {
for (int i = 0; i < size; i++) {
for (int j = 0; j < power[i] - 1; j++) {
result[i] = result[i] * result[i];

}
}

}
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Notice that the outermost loop is safe to parallelize because the inner loop only reads and writes
to arrays at index i. Each outer loop i computes the power[i]-th power of result[i] (assum-
ing a greater-than-zero values in power). Depending on the values in power, there is potentially
load imbalance across loop iterations. There are functions to instantiate power with various work
distributions and you will measure the speedups provided by different schedules.

1.1 Preliminaries
1. Review the slides from November 19th about implementing different parallel schedulers.

2. Although not required for the homework, you can review the available schedules in OpenMP.
They are similar the schedulers you will be implementing: http://www.inf.ufsc.br/
~bosco.sobral/ensino/ine5645/OpenMP_Dynamic_Scheduling.pdf

3. Similar to the previous homeworks, a skeleton and a utility header located here:
/home/tsorensen/public/homework4/part1.
Make a copy over to some homework4/part1 directory within your home directory. e.g. run
the following:
cp -r /home/tsorensen/public/homework4/part1/* ./

4. The coding aspect of this assignment is constrained largely to skeleton.py. Read through this
code to understand the structure. The python code is writing a C++ file that is then compiled
with clang++ and executed. The C++ file will time (and validate) your implementation loop
against a reference.

5. you should be able to run the skeleton as it is initially. You will fail the assertion check
when running the C++ program, as the homework loop is not implemented. Examine
homework.cpp to see the structure.

1.2 Technical work
You will write python code to fill in the loop body of:

void parallel_func(float *result, int * power, int size, int tid, int num_threads)

The main function will launch this function with 4 threads (the number of cores on our server),
instantiating the tid and num_threads arguments. You can assume thread numbers are unique for
threads and are contiguous, i.e. 0, 1, 2, 3. You can assume size is a power of 2.

The skeleton contains various schedulers that you are required to implement.

• Static Scheduler: Implement a scheduler that evenly divides outer iterations among
threads. Use a chunking strategy, i.e. the first thread gets the first 1/4 of the iterations.

• Global Workstealing Scheduler: Implement a scheduler that dynamically assigns loop it-
erations to threads. You should do this keeping track of the index with a C++ atomic_int
and atomic updates. If you are unfamiliar with C++ concurrency, please review here:
https://medium.com/swlh/c-multithreading-and-concurrency-introduction-f640ce986fa7
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This scheduler takes an additional integer argument specifying the granularity of how many
iterations to take from the global iteration counter at a time. That is, a thread might update
the global counter by N , and then perform N iterations locally. For example, a granularity
size of 8 would atomically increment the global counter by 8. This will return a value, say 128.
The thread would then perform iterations 128 through 136 locally, i.e. without performing
any atomic updates. When these iterations are finished, the thread would atomically add 8
to the global counter again, followed by 8 local iterations. This reduces the contention on the
global counter at the expense of less load balancing.

• Local Workstealing Scheduler: Implement a scheduler with local worklists. Given that
we are parallelizing over contiguous ranges, we can simplify our worklists to be keep track of
a contiguous range and location inside the range. I have implemented such a structure for
you called concurrent_range, with the following API:

– void init(int start, int end): initialize the concurrent range with a start and end
index. This is not thread safe. Do this before the threads are launched.

– bool dequeue(int &index, granularity): dequeue a range of values. The function
returns a bool indicating if the queue was successful or not. You can assume any failed
dequeue is because the range does not contain enough elements to satisfy the dequeue.
The index dequeued is returned through the index argument (passed by reference). The
granularity indicates how many values to dequeue at a time. This function is thread
safe.

Initialize each worklist with an equal number of elements. Once a thread finishes its work,
allow it to try and steal work from another thread.

All schedulers can be implemented by inserting code in three places, for which I have provided
functions (see skeleton code):

• global variables

• before the threads are launched (pre_parallel_code)

• the SPMD function body

These three functions can be found between lines 80 and 100. This is marked with BEGIN/END
HOMEWORK comments.

1.3 Evaluation
The generate_and_run function additionally takes an arguement to specify the work distribution.
There is

• uniform: all loop iterations take roughly the same amount of time, i.e. the compute the same
power.

• linear: work increases linearly with i. That is, later values of i compute a higher power of
result[i].
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• squared: work increases with i squared

• cubed: work increases with i cubed
each level provides an increasing level of load imbalance for your evaluation.
Evaluate each scheduler on each type of work distribution. For the dynamic schedulers, ex-

periment with different granularities (please keep as a power of 2 to ease your implementations).
Report on the trend of granularities, i.e. up to what value it provides a benefit with the different
work distributions. This should include graphs and written descriptions.

Summarize your results. What are the pros and cons of the different approaches? When do
they work best and why?

1.4 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework4_part1. Move your skeleton.py into that directory along with a PDF
your graphs and observations.

2 Decoupled Access Execute (DAE) Slicing
In this part of the assignment, you will provide a (DAE) slicing of a basic block of code. We will
use a slightly upgraded version of the instruction and basic block classes that we used in the local
value numbering part of homework 2. The numbering scheme will be used to create SSA code. You
will then insert DAE API calls and slice the program accordingly. This assignment considers onla
a single basic block, so there is no need to consider control dependencies; only data dependencies.

• Review the slides from Dec. 1 about implementing DAE slicing.

• If interested, review the original DAE (1982) paper:
https://courses.cs.washington.edu/courses/cse590g/04sp/
Smith-1982-Decoupled-Access-Execute-Computer-Architectures.pdf

• If interested, review the DeSC (2015) paper:
https://mrmgroup.cs.princeton.edu/papers/taejun_micro15.pdf

• Similar to the previous homeworks, a skeleton is located here:
/home/tsorensen/public/homework4/part2.
Make a copy over to some homework4/part1 directory within your home directory. e.g. run
the following:
cp -r /home/tsorensen/public/homework4/part2/* ./

• The coding aspect of this assignment is constrained to skeleton.py. Read through this code
to understand the structure. This is similar to the BasicBlock and Instruction code for the
local value numbering in Homeowork 2. I have extended the instructions to include memory
instructions (loads and stores), as well as the DAE API calls: SB store value/addr, and FIFO
enqueue/dequeue.

• you should be able to run the skeleton as it is initially, but you will fail the assertions. There
are some simple tests cases in the skeleton file.
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2.1 Technical Work
Read through skeleton.py carefully. The top-level function decouple_block takes a basic block
and returns three values: an Access basic block, an Execute basic block, and the number of loads
in the Access block that could be upgraded to terminal loads. I have outlined the various functions
for you to implement:

• Replace memory instructions in the Execute with SB_store_value and FIFO_dequeue in-
structions.

• Add FIFO_enqueues instructions to the Access and replace stores with SB_store_addr in-
structions.

• Instantiate the slicing criteria for the Access and the Execute.

• Implement a general slicing function that takes a basic block and slicing criteria.

• Analyze the Access basic block and determine how many loads could be promoted to terminal
loads.

2.2 Evaluation
Similar to prior works, I have provided a tester script that runs your program against a suite of
automatically generated basic blocks. It will check the length of your access and execute basic
blocks, and the number of loads that can be identified as terminal. Please make sure your code
passes the tester and the console output is easily parsed (i.e. please limit any additional print
statements and use types that pass the tester).

2.3 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework4_part2. Move your skeleton.py into that directory. Please make a
hard copy (no symbolic links).
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