
CSE211: Compiler Design
Homework 3: Parallelism
Assigned: Nov. 12, 2020

Due: Dec. 3, 2020

• Read through instructions fully before beginning assignment; the testing scripts described
later can help you while developing!

• These assignments are done with Python 3; you’ll need to explicitly call python3 on the server
unless you switch it in your environment. The default python command defaults to version
2.7.

• The first two parts produce C++ files which are then compiled by clang++. Please note I
have built a debug version of clang, so compiling is probably slower than you are used to.
Please don’t be alarmed.

• This homework requires timing experiments! Please only run experiments on one thread at a
time. Before you start an experimental campaign, please run top. If more than 4 people are
running experiments (look at how much memory and CPU are being used), then wait for an
hour or so. If resources become a major constraint, we can set up a reservation system.

1 Loop Unrolling Independent Iterations for ILP
Here we will consider for loops with independent iterations. However, each iteration will contain a
chain of dependent instruction. This chain is intended to impede the processor’s ability to exploit
MLP, either through pipelining or superscalar components. The length of dependent instruction
chains is a parameter of the program. Your assignment is to unroll the loops, first doing each
iteration sequentially, and then interleaving the instructions from different iterations. Interleaving
instructions should allow the processor to exploit more ILP and you should be able to see this in
your timing experiments. You will measure the execution time of various dependent chain lengths
and unrolling factors.

1.1 Preliminaries
1. Read through Chapter 9 of the dragon book (you can skim, there is a lot of implementation

details you do not need to know in detail) to refresh yourself on ILP. You can also review the
Nov. 10 lecture which should contain all required background.

2. Find the assignment skeleton at /home/tsorensen/public/homework3/part1. Make a copy
over to some homework1/part3 directory within your home directory. e.g. run the following:
cp -r /home/tsorensen/public/homework3/part1/* ./

1

3. The coding aspect of this assignment is constrained largely to skeleton.py. Read through
this code to understand the structure. The python code is writing a C++ file that is then
compiled with clang++ and executed. The C++ file will time your implementation loop
against a reference.

4. you should be able to run the skeleton as it is initially. You will fail the assertion check
when running the C++ program, as the homework loop is not implemented. Examine
homework.cpp to see the structure.

5. You will need clang++ in your path for this part of the assignment. Please add it to your
path in your /.bashrc file by adding:
export PATH="/home/tsorensen/software/llvm-project/build/bin/:$PATH"

1.2 Technical work
You will implement a function that unrolls the reference loop and interleaves the instructions
to exploit ILP. Your function starts around line 68. Please read the long comment above the
function for the specification and description of the parameters. There is also an example of how
an interleaved and unrolled loop should look.

You can assume that the size is always a power of 2, and so is the unroll factor. That is, you
do not need to implement ”clean” up iterations.

For the evaluation, you are not allowed to change the clang++ compile line, the reference loop,
or the main string. The timings you use for your evaluation need to come from a program that
passes all of the assertions.

1.3 Evaluation
Run your program with all combinations of {1, 2, 4, 8, 16, 32, 64, 128} for both chain length and
unrolling factor. Collect data for both interleaved and non-interleaved unrollings. My suggestion
is to modify skeleton.py to accept command line arguments for the chain length, unrolling factor
and interleaved value. Then make an additional script that runs skeleton with various parameters
and parses the output to collect the speedup data.

Please report your timing information as a heatmap. The X axis should be the unrolling factor
and the Y axis should be the dependency chain length. There are many tools that can produce
heatmaps, for example:

• gnuplot: http://gnuplot.sourceforge.net/demo_5.2/heatmaps.html

• Excel: https://www.excel-easy.com/examples/heat-map.html

Please include numbers in your heatmap, similar to the Excel example.
Prepare two heatmaps: one for interleaved unrollings and one for non-interleaved unrollings.

1.4 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework3_part1. Move your skeleton.py into that directory along with a PDF
containing both of your heatmaps.

2

http://gnuplot.sourceforge.net/demo_5.2/heatmaps.html
https://www.excel-easy.com/examples/heat-map.html

2 Unrolling Reduction Loops for ILP
Part 2 is identical to part 1, except we are targeting a different type of for loop. Here we are
targeting reduction loops, where each iteration depends on the previous one. Recall in class, we
showed that these loops can be unrolled to exploit ILP. You should apply a ”chunking” unroll
style, i.e. how we described in lecture. That is, the input array should be divided into N equal
sized chunks (where N is the unrolling factor). Each loop iteration can then execute N reduction
commands. At the end of the function, there needs to be a loop adding up the totals for each N.

There is only one parameter in this part, the unroll factor. Because of this, your timing results
can be displayed as simple line graphs, where time is the Y axis, and the unroll factor is the X axis.
You only have to go up to an unrolling factor of size 32 in this part (you will see why).

Again you can assume the size and unroll factor is always a power of 2.
There is an example in the code comments. All other aspects of this part can are the same as

part 1. The skeleton can be found at:
/home/tsorensen/public/homework3/part2

2.1 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework3_part2. Move your skeleton.py into that directory along with a PDF
containing your timing experiments.

3 Detecting SPMD Parallel Loops
In this part, you will be given some nested for loops, and two index calculations for a memory access
(a read and a write). Your job is to determine if it is safe to make the outer-most loop parallel. That
is, you will need to determine if the index calculations could conflict with two threads executing
the outer-most loop. You will build up constraints that model a reader thread and a writer thread.
You will use the Z3 constraint solver to check if the two threads can conflict.

3.1 Preliminaries
1. Review the lectures on Nov 12 as they go over the theory for this part of the homework.

2. Go through the Python Z3 tutorial at:
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
You only need to go up to the ”Functions” section (immediately after the ”Machine Arith-
metic” section).
Find the assignment skeleton at /home/tsorensen/public/homework3/part3. Make a copy
over to some homework1/part3 directory within your home directory. e.g. run the following:
cp -r /home/tsorensen/public/homework3/part3/* ./

3. Your assignment is constrained to skeleton.py. Read through this code to understand
the structure. I have done the work to parse the python AST for you. You will need to
implement the constraint solving in check_parallel_safety around line 172. Please read

3

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

the specification and comments (especially the description at the top of the file) carefully.
You do not need to fully understand the ast parsing, and those functions are labeled.

3.2 Technical Work
Your job is to implement constraints to determine if two threads would conflict if the outer-most
loop is made parallel. The programs have an extremely limited form. They are an arbitrary nest
of for loops followed by a read index calculation and a write index calculation. I have parsed the
AST and provided you with a list of ForLoops and read/write index strings.

Use Z3 to create two variables per for loop: one for the reader thread, and one for the writer
thread. Add the constraints to the solver such that these variables respect their loop bounds. The
outer-most loop will need an additional constraint as the reader and writer thread cannot have the
same value for the loop variable.

The read/write index strings will be expressions consisting only of numbers, loop variables, and
operators (+ or *). I suggest using string replace functions to substitute the Z3 loop variables into
these strings. You can then set a constraint where these two strings are equal to each other. This
string can be evaluated using eval. This is not the cleanest solution, but I did not want to subject
you to the actual Python AST.

At this point, ask Z3 to solve the equation. If the equation is satisfiable, it means there is some
iteration from the writer thread that conflicts with some iteration of the reader thread, and thus it
is not safe to make the outer-most loop parallel.

3.3 Evaluation
Much like the previous assignments, I have provided a tester.py that you can run. There are 8
test cases in the test_cases directory. You can run your skeleton directly given one of these files.

3.4 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework3_part3. Move your skeleton.py into that directory. Do not make
this directory readable by anybody else. I have admin privileges that will allow me to copy from
there.

4

	Loop Unrolling Independent Iterations for ILP
	Preliminaries
	Technical work
	Evaluation
	Submission

	Unrolling Reduction Loops for ILP
	Submission

	Detecting SPMD Parallel Loops
	Preliminaries
	Technical Work
	Evaluation
	Submission

