
CSE211: Compiler Design
Homework 1: Parsing Overview

Due Oct. 22, 2020

Oct. 8, 2020

• Read through instructions fully before beginning assignment; the testing scripts described
later can help you while developing!

• These assignments are done with Python 3; you’ll need to explicitly call python3 on the server
unless you switch it in your environment. The default python command defaults to version
2.7.

1 Parsing Regular Expressions with Derivatives
This problem should introduce you to parsing using a Python implementation of Lex and Yacc
(PLY). We will be parsing regular expressions using the ”Parsing with Derivatives” method, de-
tailed in [1]. This approach treats REs as a tree structure and recursively generates new regular
expressions. We will use Lex and Yacc to parse the regular expression, creating an RE tree. We
will then use derivatives to match strings to the RE.

The REs we will be considering consist of characters (upper-case, lower-case, and numbers). The
operators are concatenation (.), union (|), and Kleene star (*). Your job is to implement several
missing functions and add a new RE operator: the optional operator (?).

1.1 Preliminaries
1. Read through the first 7 pages of [1] to refresh yourself on parsing REs with derivatives

2. Find the assignment skeleton at /home/tsorensen/public/homework1/part1. Make a copy
over to some homework1/part1 directory within your home directory. Make sure to include
the subdirectory for PLY and the tester files. e.g. run the following:
cp -r /home/tsorensen/public/homework1/part1/* ./

3. Your assignment is constrained to skeleton.py. Read through this code and understand the
structure of the RE tree structure, the tokenizer (lex) and the parser (yacc).

1.2 Technical work
1. Implement the nullability operation for the union operator on line 115. You will see a comment

and a raise NotImplementedError.

1



• hint: look at the implementation of the nullability operation for the concatenation operator
just above. Use the mk functions to build a new RE to return. Recursion is your friend!

2. Implement the derivative operation for the Kleene star operator around line 163. You will see
the raise NotImplementedError

• hint: look at the definition in [1] Use the functions provided to create a new regular
expression.

3. Implement the derivative operation for the concatenation operator around line 170. You will
see the raise NotImplementedError

• hint: remember the nullability function returns a regular expression.

4. Add in support for the unary optional regular expression operator (?). This operator matches
zero or one instances of the sub-expression. For example: the regular expression f.l.o.w.e.r.s?
matches the strings {flower, flowers}. The regular expression e.x.c.i.t.e.(m.e.n.t)?
matches the strings {excite, excitement}. You should do this in steps:

• Add a token for ’?’
• Parse the operation. It should be at a similar precedence as the Kleene star (*) operator.

I do not mind if it is higher or lower, but it should not be higher than parenthesises, or
lower than concatenation. Ideally it would be the same precedent as the Kleene star,
evaluated with right-associativity, but we did not cover that in class. If you read the
PLY documentation you can try it out!

• There are several ways to implement the operator. I suggest you have the parser return
a union regular expression that is equivalent to the definition of the optional operator
(figuring out this union regular expression is up to you!). The harder route would be to
make a new optional operator in the RE tree, and implement both the nullability and
derivative function for the optional operator. I would not recommend that approach.

1.3 Evaluation
1. Test your implementation. You can run your script standalone, i.e. running: python

skeleton.py and it will run the test RE and strings at the bottom of the file.

2. You can test your implementation using my testing script tester.py. It will run many
strings and REs and report errors. Simply run it as python tester.py This script tests only
the concatenation, union, star and parenthesis operations. The tester_optional.py script
additionally tests the optional (?) operator.

1.4 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework1_part1. Move your skeleton.py into that directory. Do not make
this directory readable by anybody else. I have admin privileges that will allow me to copy from
there.

2



1.5 References
[1] Scott Owens, John Reppy, Aaron Turon. ”Regular-expression derivatives reexamined”. https:
//www.ccs.neu.edu/home/turon/re-deriv.pdf

2 Parsing a Simple Programming Language
Using your experiences with PLY from question 1, finish implementing a parser for a simple c-like
programming language. You do not need to do anything with the language except for parsing.
Given this, your Yacc production rules should only just contain pass (I have provided examples).
Like in part 1, I have provided a skeleton for you. Please use this skeleton because it is set up in a
way that I can automatically test.

2.1 Preliminaries
1. Review the tokenizer and parser from part 1 to understand how to implement tokens and

production rules in PLY.

2. Review how to write production rules that take precedence into account. Consider the oper-
ators for the regular expression in part 1. This topic is also covered in class slides.

3. Find the assignment skeleton at /home/tsorensen/public/homework1/part2. Make a copy
over to some homework1/part2 directory within your home directory. Make sure to include
the subdirectory for PLY and the tester files. e.g. run the following:
cp -r /home/tsorensen/public/homework1/part2/* ./

4. Your assignment is constrained to skeleton.py. Read through this code and to understand
the structure and what you will be implementing.

2.2 Technical work
1. Implement the tokens around line 22. Most of these will be a single character. The notable

exception is that the NUMBER token should be able to match floating point numbers. I have
implemented the ID and keyword tokenizing for you.

2. Impelement the remaining production rules. I have provided the top level rule as a statement
list, defined the different types of statements, and implemented the declaration statements.
The remaining statements for you to implement are:

• an assignment statement of the form: ID ASSIGNMENT expression. You will need to
also implement the expression rules which should match arithmetic expressions consisting
of {(),*,+,<}, in that precedence. Using our method discussed in class, this will require
5 levels of expression parsing. You can also use fewer if you explicitly define precedence
as described in the PLY documentation. Examples of assignment statements are:
x = 5
tmp = (5+6) * 5.6 < 0 + z

3

https://www.ccs.neu.edu/home/turon/re-deriv.pdf
https://www.ccs.neu.edu/home/turon/re-deriv.pdf


• an if statement of the form:
IF OPEN_PAREN expression CLOSE_PAREN OPEN_BRACE statement_list CLOSE_BRACE.
You should be able to implement this with one production rule. An example of an if
statement is:
if (x < 5) {x = x + 1;}

• a for statement. This statement should mirror the C for statement. It starts with the
keyword for, followed by parenthesis a list of: an assignment statement, an expression,
and an assignment expression. There is no semicolon required after the last assignment
expression. After this list, there is a list of statements enclosed in braces. An example
is:
for (x = 0; x < 5; x = x + 1) {z = z + 1;}

2.3 Evaluation
1. Test your implementation. You can run your script standalone, i.e. running: python

skeleton.py and it will run the test program at the bottom of the file.

2. You can test your implementation using my testing script tester.py. It will run many
programs and report errors. Simply run it as python tester.py.

2.4 Submission
Please create a directory in your home directory called: submissions. Within that directory, create
a directory called homework1_part2. Move your skeleton.py into that directory. Do not make
this directory readable by anybody else. I have admin privileges that will allow me to copy from
there.

4


	Parsing Regular Expressions with Derivatives
	Preliminaries
	Technical work
	Evaluation
	Submission
	References

	Parsing a Simple Programming Language
	Preliminaries
	Technical work
	Evaluation
	Submission


