

2.1.1. Visual disability

- Normal: 20/20: the ability to read letters of a certain size (the norm for one's age) from the eye chart placed 20' away
- > 20/40 = You need twice the size to read at 20'
- Registered blind = 20/200
- At least 1.5M blind and visually impaired Americans use computers
- Only 10% blind people read Braille
- The most common AT: screen magnifier/reader

Hypermetropia (far-sighted) (short-sighted)

2.1.1. Visual disability

Color Blindness

8-10% male and 0.5% female populations experience some form of color deficiency

Protanope

- 1% males, "red-weakness"
- Deuteranope
 - 5% males, "green-weakness"
- Tritanope
 - blue/yellow deficit

Ageing-related

Macular Degeneration

Retinopathy (mostly) caused by diabetes)

2.1.1 Visual Disability

Normal vision

Simulated using Vischek (http://www.vischeck.com/vischeck/vischeckURL.php)

Deuteranope

Protanope

2.1.2 Vision: color

- Different wavelengths of light focused at different distances behind eye's lens
 - need for constant refocusing \rightarrow fatigue
 - be careful about color combinations

More saturated colors = more focusing

- don't use saturated colors in UIs unless you really need something to stand out (warning)
- pastel colors are cleaner
- Stereoscopic vision (slightly different image to each eye) gives excellent depth perception
- Color picker: http://www.visibone.com/colorlab/

2.1.2. Vision: color

- Cone cells detect color (hue, saturation value) through photo-pigments.
 - mainly reds (64%) & very few blues (4%).
 - Center of retina (high acuity) has no blue. Means disappearance of small blue objects you fixate on.
- Brightness is determined mainly by R+G
- Shapes are detected by finding edges
 - combine brightness & color differences for sharpness
 - harder to deal w/ blue edges & blue shapes

2.1.3. Designing with color

- Before designing with colors, ask:
 - Does color add something that cannot be provided by black and white?
 - Is the chosen color appropriate for the text or object?
 - Does the color provide cues to improve understanding or memory?

- Are there any visual problems that may make the information less legible (dyslexia, color blindness, aging)?
- On-screen color varies widely from device to device for two reasons
 - Device calibration (gamma setting, 1.8 for PC, 2.2 for Mac
 - Inability to display certain color (color replacement)

2.2.3 Auditory Impairment

Marginal, mild, and moderate losses: 2-60 dB loss

- Profoundly impaired/deaf: 60-75 decibel loss in hearing capacity in the better ear
- Causes: 50-75 percent prenatal 10-20 percent perinatal (rubella) 20-30 percent postnatal (aging)

- Presbyacusis: aging-related progressive hearing loss of higher frequency, more common in men
 - Check mosquito ringtone \rightarrow annoying for under 30
- Noise-induced hearing loss (NIHL): results from exposure to high-intensity sounds, over a long period of time

2.3.2 Motor subsystem: Fitts' Law

- > Fitts' Law predicts that the time to point at an object using a device is a function of the distance from the target object & the object's size.
- The further away & the smaller the object, the longer the time to click on it.
- Fitts' Law is useful for designing systems for which the time to click on an object is important

2.2.4 Designing with Sounds

2.3.1 Haptics (touch)

- Receiving thermomechanical forces and perceiving physical properties of things
- Three kinds of cutaneous receptor (skin)
 - Thermoreceptors (temperature)
 - Mechanoreceptors (pressure)
 - Nocioceptors (pain)
- Kinaesthestic sense body pose
 - Two kinds of proprioceptor in joints
- Reaction times depend on fitness
 - Practice improves
 - Deteriorate with age

2.3.2 Motor subsystem

Fitts' Law

- $MT = a + b \log_2 \left(\frac{2A}{W} + c\right)$ MT is the movement time
- a and b are empirically determined constants, that are device dependent.
- c is a constant of 0, 0.5 or 1
- A is the distance of movement from start to target centre
- W is the width of the target, which corresponds to "accuracy"
- It has an assumption that the most time used is for homing (i.e. better to locate objects on the edges of the screen even if it's further)
- BUT, only accounts for *direct line* movements

2.3.3. Motor Impairment

▶ Paralysis – usually due to spinal injury, the higher the damage the greater the degree of paralysis

- tetraplegia/quadriplegia all four limbs
- paraplegia lower limbs only

Lack of strength (aging = reduced grip strength)

Tremor/lack of accuracy (Parkinson's disease)

Slowness (age-related)

Cerebral palsies: a group of disorders in the development of postural control and mobility

Some input devices to address motor impairment:

- HMD and eye-trackers
- Blow-suck tube, tongue joystick
- Voice recognition systems
- Sticky keys, slow keys, gravity well

3.1 Why study cognition?

- Interacting with technology is cognitive
- We need to take into account cognitive processes involved and cognitive limitations of users
- We can provide knowledge about what users can and cannot be expected to do
- Identify and explain the nature and causes of problems users encounter
- Supply theories, modelling tools, guidance and methods that can lead to the design of better interactive products

3.2.1 Attention

- Selecting things to concentrate on at a point in time from the mass of stimuli around us
- Two states:
 - Focused attention: ability to attend to stimulus in presence of distracters
 - Divided attention: ability to attend simultaneously to lots of things
- Driven by meaning and by change
 - Voluntary: Examine an object, directing gaze etc.
 - Captured by salience and grouping: spatial, intensity, color, size, timbre, pitch, *convention*
 - Involuntary *capture* and movement: Perceptual filters "trigger" attention capture (cocktail party effect, buzzing light)

- 3.1 Why study cognition
- 3.2. Attention, memory and problem solving
- 3.3 Cognitive impairment

3.1. Core cognitive aspects

- Attention
- Perception and recognition
- Memory
- Reading, speaking and listening
- Problem-solving, planning, reasoning and decisionmaking, learning
- Most relevant to HCI are attention, perception and recognition, and memory

3.2.1 Designing for attention

- Make things salient: use colour, larger font, white space, underlining, animation, noises
- Presenting supporting information that is relevant to goal (google's advertisement)

3.2.3. Sensory buffers/memory 3.2.3 Short-term memory Limited capacity Very brief, but accurate representation of what 7 <u>+</u> 2 chunks (Miller) – often misinterpreted was perceived A chunk is a meaningful grouping of information – allows assistance from LTM (individual differences) Details decay quickly (70 - 1000 ms visual; 0.9 - 3.5 s auditory) Early and late best Limited capacity (7 - 17 letters visual; 4 - 6 auditory) Applies to 'raw' content (strategies & meaning affect) memory) 3.2.3 Short-term memory Can you memorize these? Dynamics HEC ATR ANU PTH ETR EET Decay 5-226 sec, rehearsal prevents decay, interference 746335892147530 speeds up decay Easier when grouped Rapid access THE CAT RAN UP THE TREE 1 2 3 Serial position in list Serves as "working memory" • 746 335 892 147 530 Permits combination of sensory and memory information 3.2.4 Long-term memory 3.2.4 Long-term memory The sum of all we know Slow access (100ms to days) – tip-of-the-tongue Semantic memory Limitless capacity, stable content "facts" (knowing that) Memory for meaning Cows have four legs, red is a color Facts and skills Skills (knowing how) Relationships between things Cook rice or drive a car Conceptual connections Stories or episodes Massively distributed networks Personal, history, fictitious Built up by association Experience and exposure 3.2.4 Long-term memory 3.2.4 Long-term memory Link strength More connections: Affects ease of access more "anchors" for new learning Function of usage frequency more "routes" for recall "Hebbian learning" to strengthen neural links reathes move \rightarrow how neuronal connections are enforced in eather mammalian brains is a Simultaneous activation of neural pathways Intermittent coactivation (exposure) most effective wate

Recall

- info reproduced from memory
- Recognition
 - presentation of info provides knowledge that info has been seen before
 - easier because of cues to retrieval
- We want to design UIs that rely on recognition!

3.2.6 Reasoning

Usage of domains of knowledge and understanding

- Within domains
 - Familiar structures (an individual's scripts again)
 - Common concepts
- Application of (pseudo)logic
 - Combination of rules and experience
 - Rationality within sets of knowledge

3.2.6 Reasoning

Deduction

- Derive logical conclusion from given premises
 Vegetables are healthy, potatoes are vegetables, chips are potatoes → chips are healthy.
- Induction
 - Generalisation from instances
 - ▶ The swans (I've seen) are white \rightarrow Swans are white

Abduction

- Reasoning from event to cause
 - When Sam is drunk, he drives fast. Sam passes my car with 90 mph → he is drunk.

3.2.8 Mental model

- A person's understanding of the world
 - Partial, informal, unstable
- Properties, interactions, forces, effects
 - E.g. cooking with a gas oven, way a can opener works
- ► Forged by experience
 - Trial and error
 - Consistent with model = believe in model
- Deep versus shallow models (e.g. how to drive a car and how it works)
- Case 1: You arrive home hungry, frozen pizza instruction says heat in 350F oven. Set oven to max to speed up?
- Case 2: In desperate need hot shower, open tap to the max to speed up hot water?

3.2.10 Error

There are two types of error

- Mistakes
 - Wrong intention caused by "wrong" model
- Action slips
 - Right intention but failed to do it right
- We should design to minimize error

Mac OS X

3.2.7 Designing for reasoning

at Icols

- Affordance: the properties that things (are perceived to) have and how these relate to how the things could be used
- Metaphor: describing a first object as being or equal to a second object in some way
- Mapping: the set of possible relations between objects

3.2.9 Designing for mental model

People have preconceived models that you may not be able to change – so adapt

Disconnecting = pulling the wire out, not eject

- Interface must communicate model
 - Help/documentation to communicate your model
 - Visually make things visible
 - Constraint restrict what is irrelevant

3.3. Cognitive impairments

Speech and language disorders

- Receptive: Do not respond as they should to familiar names, questions, or directions
- Expressive: Have spoken language skills far below their peers
- Articulation disorders: Disorders of precision, clarity, and accuracy of speech sounds

Learning disabilities

- Disorders of reading, spelling, writing, and mathematics
- Dyslexia: Umbrella term for reading disabilities (includes letter reversal, sound retrieval and production in the written word, and word misusage)

3.3.1. More on Dyslexia		Summary
routrast with the background. The challenge is to find the right contrast (character colour and paper colour) that complements the character. This can be accomplished with the right weight of a typeface in somblesion with the clubt colour course, we files the washest colour.	Washout effect	 A well-designed interface/interaction supports: User's mental model of the underlying behavior of the device Mapping: makes the relationship obvious between the actual action of the device and the action of the user Affordances makes each operation visible Recognition rather than recall users don't need to remember everything
verferences regarding all readers, dyslexies in particular, centred can beusedfor readings ortitles. Aligned right and justifi ed causes roblems, aligned right causes confusion with flowing to the nextline. Justified textereates ion-consistency of word spacing, and this can lead to the river-ef fect fistortion. Very import tantis the strong advice against hyp henation, hewordis split and there forecauses difficulty in comprehension. As in overall remark 1/d like to emphasise not to provide a'lear ning-how-to- vead' visual, butto focus on clarity, consistency and space, used inits	River effect	
Read Regular is created without copying or mirroring shapes. Therefore the frequency of repeated shapes in a text is decreased. This results in a minimum rhanee of visual distortions (swirl-effect). The aim is to create interesting spography that will maintain the readers' interest and will prevent them from getting hored or flustanted. Diversity in text knows many variations. We must anderstand the fact that typography for a novel is different from a magazine of a publication for education. Even so a novel has the potential to be elear and anteresting. This can be achieved in any level of creativity, thinking on type size; reading, the amount of words on a sentence and the character/paper combination:	Swirl effect	