Sound Waves
► sound waves are created by a vibrating object
 • any type of molecules (gas, liquid, solid) that can move and create a pressure wave can produce sound
► waves received by ears, transduced into neural signals
► amplitude corresponds to volume
 • Larger/smaller amplitude = louder/softer sound
► wavelength corresponds to pitch
 • Longer/shorter wavelength = lower/higher pitch

Sound Waves
►Pitch
 • 20Hz – 15KHz, tuned to 3Khz by shape of outer ear
 • Human is less accurate in distinguishing high frequencies than low ones
►Timbre
 • ‘signature’ of sound source
 • complex set of resonance overlaying the fundamental frequency
►Amplitude and loudness
 • Loudness is a psychological property of sound
 • Our ears are capable to cope with 0 to 160db (pain at 130db!)
►Temporalisation – positioning of a sound in 2D or 3D space

Hearing Impairment
► 28+M Americans have hearing problems
 • can be inherited or acquired
 • more than 30 genes have been linked to deafness
►Marginal, mild, and moderate losses: 2-60 dB loss
►Profoundly impaired/deaf: 60-75 dB loss in hearing capacity in the better ear
►Causes: 50-75% prenatal, 10-20% perinatal (rubella), 20-30% postnatal (aging)
►Presbyacusis: aging-related progressive hearing loss of higher frequency, more common in men
 • Check mosquito ringtone → annoying for under 30
►Tinnitus: constant ringing or noise in the ears
 • Causes: nerve damage, ear infections, even aspirin!

Auditory Transduction
► Two explanations of how basilar membrane converts pressure waves to perceived sound (i.e. how we perceive pitch):
 1. **place theory**: different frequencies activate different parts of the basilar membrane
 2. **frequency theory**: higher frequencies = greater neural firing
 But neurons can fire, at most, 1000 times per second. How do we hear sounds that are at a much greater frequency? (e.g. the upper third of a piano’s keyboard) → volley principle
►primary auditory cortex in temporal lobe
 • different pitches registered by different neurons within auditory cortex (like feature detectors in vision)
Locating Sounds

- Two ears work together to locate the source
 1. Difference in phase: sound waves reach ears at slightly different points in wave cycle
 2. Difference in loudness: ear closer to sound source registers louder signal
 3. Difference in onset: ear closer to sound source registers signal slightly sooner
- Tiny differences, but enough for us to perceive
 - E.g. difference in onset of 0.000027s can be distinguished

Hearing Without Awareness

- Cocktail party phenomenon: the effect of not being aware of the content of other people's conversations until your name is mentioned
 - Processing signal bottom-up, but top-down awareness isn't drawn until self-relevant information is introduced
- Dichotic listening task: different stimuli delivered to two ears via headphones; instructed to monitor only one signal
 - Still perceive some information (e.g. speaker's gender) from ignored ear (Treisman, 1964)

Interacting with Sounds

- Speech synthesis
- Speech recognition
- Non-verbal sounds
- Non-verbal input (feature extraction)
- Data sonification
- Output (computer → user)
- Input (user → computer)

Non-Speech Outputs

- Language independent
- Evidence to show they are useful
 - Fewer typing mistakes with key clicks
 - Video games harder without sound
- Especially good for transient/background status info
- Use of stereo allows positional information
 - Sonification
- Auditory icons
 - Natural sounds with associated semantics which can be mapped onto similar meanings in the interaction, e.g. throwing something away → the sound of smashing glass
 - Problem: not all things have associated meanings

Non-Speech Inputs

- Interpretation of non-speech patterns → faster
- Usable by people with speech/language impairment
- But highly affected by background noise as it relies on FFT or autocorrelation for some

Non-Speech Outputs

- Earcons
 - Synthetic sounds used to convey information
 - Structured combinations of notes (motives) represent actions and objects
 - Easily grouped and refined due to compositional and hierarchical nature
 - Harder to associate with the interface task since there is no natural mapping

Non-Speech Inputs

- Interpretation of non-speech patterns → faster
- Usable by people with speech/language impairment
- But highly affected by background noise as it relies on FFT or autocorrelation for some
Speech

► Humans have a great & natural mastery of speech
 - makes it difficult to appreciate the complexities, but
 - it’s an easy medium for communication
► Structure of Speech
 - Phonemes → 40 basic atomic units; sound slightly different depending on the context they are in
 - Allophones: 120-130; all the sounds in the language
 - Morphemes: smallest unit of language that has meaning
► Other aspects of speech
 - Syntax (structure) & semantics (meaning) of sentences
 - Prosody: alteration in tone; variations in emphasis, stress, pauses and pitch → impart more meaning to sentences.
 - Formant: a combination of tones produced in the articulation of vowels and some consonants

Speech Systems

► Voice is being accepted as a natural way to interact with (mobile) devices and more recently agents
 - Windows Vista provides embedded speech recognition / dictation technology
► Speech Recognition
 - Single user, limited vocabulary systems widely available, e.g. dictation, voice commands (continuous speech)
 - Open use, limited vocabulary systems can work satisfactorily, e.g. phone banking
 - No general user, wide vocabulary systems are commercially successful, yet (state-of-the-arts = 60K words)
 - But useful in hands-busy situations, for people with motor impairment or in mobile applications

Speech Synthesis

► Speech Synthesis and Text-to-Speech
 - Successful in screen reader applications for blind people and in warning systems (in both cases being natural is hardly the main issue)
 - First system was in 1804 (von Kempelen)
 - Leather resonator manipulated by the operator to try and copy vocal tract configuration
► Modern speech synthesis
 - Articulatory Synthesis: Model movements of articulators and acoustics of vocal tract
 - Formant Synthesis: Start with acoustics, create rules/filters to create each formant → when computers were relatively underpowered
 - Concatenative Synthesis (a.k.a. unit selection synthesis): Use databases of stored speech to assemble new utterances.

Problems with Speech Systems

► Speech Recognition
 - Different people speak differently: accent, intonation, stress, idiom, volume and so on can all vary.
 - The syntax of semantically similar sentences may vary.
 - Background noises can interfere.
 - People often “ummmm.....” and “errrr.....” → meaningful
 - Words are not enough - semantics needed as well
► Speech Synthesis
 - Problems - similar to recognition: prosody particularly
 - Intrusive - needs headphones, or creates noise in the workplace
 - Transient - harder to review and browse → check Whitaker’s work on chitty chatty

Voice Recognition Systems

► Not speech recognition! These are biometric systems.
 - Utilizes the distinctive aspects of the voice to verify the identity of individuals.
► Measures vocal qualities not detectable by humans
 - Pitch and frequency are key features measured
► Voice scan algorithms also measure
 - gain or intensity
 - short time spectrum of speech,
 - formant frequencies,
 - Spectrograms
 - Nasal co-articulation
► Replicable only by human voice and therefore more secure
 - Based on statistics based pattern matching called Hidden Markov Models (HMM)

Speech Systems Comparison

<table>
<thead>
<tr>
<th>Speech Interface approach:</th>
<th>Unconstrained Natural Language</th>
<th>Dialog Tree</th>
<th>Command and Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>User's effort</td>
<td>low</td>
<td>moderate</td>
<td>high (moderate with use)</td>
</tr>
<tr>
<td>Developer's effort</td>
<td>very high</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>User training</td>
<td>none</td>
<td>none</td>
<td>required for each application</td>
</tr>
<tr>
<td>Supports discovery?</td>
<td>no</td>
<td>yes, ineffectively</td>
<td>possibly</td>
</tr>
<tr>
<td>Scales to complex tasks?</td>
<td>unknown</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Scales to hundreds of applications?</td>
<td>yes, but effort not amortized</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Stress on speech recognizer & parser</td>
<td>high</td>
<td>low</td>
<td>moderate</td>
</tr>
</tbody>
</table>

Table 1 summarizes the properties of the three approaches to speech interfaces discussed above. As can be seen, no approach is satisfactory along all dimensions.
Music
► Influence emotion and decision making (gender and age specific)
► Music in commerce is a multi-million pound industry
 ▪ Many effects of background music in retail and leisure
 ▪ Arousing music speeds up customer activity
 ▪ Relaxing music increases on-hold waiting time
► Music is also used in healthcare
 ▪ Conventional music therapy → treats chronic psychological
 and physical disorders (e.g. learning difficulties)
 ▪ Music and physical health → There is a link between music
 and pain, stress, immunity, anaesthetic use, length of labor,
 weight gain in premature babies etc.
► But very under-explored in computer interaction

Body Motion
► High Speed & Precision
 ▪ 1st class: finger motions, e.g., typing, clicking.
 ▪ 2nd class: also wrist motions, e.g., moving mouse
 ▪ 3rd class: also forearm motions, e.g., using wii
 ▪ 4th class: also upper arm and shoulder motions, e.g. arcade games – first
 person shooter
 ▪ 5th class: whole body motions: leg, trunk, e.g., more immersive VR
► Low Speed & Precision

Gilbreth’s 17 Basic Therbligs

<table>
<thead>
<tr>
<th>Effective Therbligs</th>
<th>Ineffective Therbligs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE = Reach</td>
<td>S = Search</td>
</tr>
<tr>
<td>M = Move</td>
<td>SE = Select</td>
</tr>
<tr>
<td>G = Grasp</td>
<td>P = Position</td>
</tr>
<tr>
<td>RL = Release</td>
<td>I = Inspect</td>
</tr>
<tr>
<td>PP = Pre-position</td>
<td>PL = Plan</td>
</tr>
<tr>
<td>U = Use</td>
<td>UD = Unavoidable delay</td>
</tr>
<tr>
<td>A = Assemble</td>
<td>AD = Avoidable delay</td>
</tr>
<tr>
<td>DA = Disassemble</td>
<td>R = Rest</td>
</tr>
<tr>
<td></td>
<td>H = Hold</td>
</tr>
</tbody>
</table>

Effective: advance work
Ineffective: do not advance work – consider whether they can be eliminated.

Tactile Perception
► Touch is complex: tying a shoelace
► Only bi-directional communication channel – both input & output
► Provides information about our environment
 ▪ e.g. hot, cold, smooth, rough
► Provides feedback
 ▪ e.g. when trying to lift an object, press buttons, etc.
► Mechanoreceptors detect skin deformations
► Tactile acuity is determined by how close the mechanoreceptors are to each other and by the size of the receptive field

Haptics
► adj. Of or relating to the sense of touch; tactile.
 [Greek haptikos, from haptesthai, to grasp, touch.]
 ▪ Haptics involves both proprioceptive and tactile senses, in concert with other senses.
► Haptic interfaces
 ▪ Fully duplex channel. You can both transmit and receive information simultaneously.
 ▪ Requires very high refresh rates of approx. 1000 Hz for realistic feel.
 ▪ Requires very high spatial resolution.
► Tactile technology: information is produced by perturbing the skin → Braille devices
► Force feedback technology: kinesthetic info is produced by exerting mechanical forces

Motor subsystem: Fitts’ Law
► Fitts’ Law predicts that the time to point at an object using a device is a function of the distance from the target object & the object’s size.
► The further away & the smaller the object, the longer the time to click on it.
► Fitts’ Law is useful for designing systems for which the time to click on an object is important
Fitts’ Law

- MT is the movement time
- a and b are empirically determined constants, that are device dependent.
- c is a constant of 0, 0.5 or 1
- A is the distance of movement from start to target centre
- W is the width of the target, which corresponds to “accuracy”
- It has an assumption that the most time used is for homing (i.e. better to locate objects on the edges of the screen even if it's further)
- BUT, only accounts for direct line movements

$$MT = a + b \log_2\left(\frac{2A}{W + c}\right)$$

Motor Impairment

► Paralysis – usually due to spinal injury, the higher the damage the greater the degree of paralysis
 - tetraplegia/quadriplegia – all four limbs
 - paraplegia – lower limbs only
► Lack of strength (aging = reduced grip strength)
► Tremor/lack of accuracy (Parkinson’s disease)
► Slowness (age-related)
► Cerebral palsies: a group of disorders in the development of postural control and mobility
► Some input devices to address motor impairment:
 - HMD and eye-trackers
 - Blow-suck tube, tongue joystick
 - Voice recognition systems
 - Sticky keys, slow keys, gravity well

Cumulative Trauma Disorders (CTD)

► A.k.a. repetitive motion/strain injuries (RSI)
► E.g. carpal tunnel syndrome, tennis elbow, bursitis, trigger finger
► National Safety Council (1997) says that 15 – 20% of workers in key industries are at risk for CTD (meat packing, poultry, auto and garment industries) → 2 claims per 1000 workers @ $30K pre case
► Symptoms: swelling, numbness, pain, restricted movement
► Causes:
 - Excessive force; high repetition
 - Awkward or extreme joint motions
 - Long work without break

Avoiding CTD – Relevant Guidelines

1. Maintain a straight wrist
2. Avoid tissue compression
3. Design tools to be used by either hand
4. Avoid repetitive finger motions
5. Use strongest working fingers: middle and thumb
6. Design appropriately shaped handles
7. Design grip surface to be compressible and non-conductive
8. Keep the weight of the tool below 5 lbs.
9. Use proper configuration and orientation of tools

Multimodal versus Multimedia

► Multimodal systems
 - use more than one sense/mode of interaction
 - e.g. visual and aural senses: a text processor may speak the words as well as printing them to the screen
► Multimedia systems
 - use a number of different media to communicate information
 - e.g. an e-learning system may use video, animation, text and still images and use speech and non-speech
► Interaction with these systems
 - The combination of human output channels effectively increases the bandwidth of the human-machine channel (e.g., Oviatt, 1999).
 - But can cause deterioration in performance (e.g. driving and talking on cell phones?)

Paradigms of Multimodal Interaction

1. Computer as a tool
 - multiple input modalities are used to enhance direct manipulation [Shneiderman, 1982] system behavior
 - the computer is a passive tool and tries to understand the user through all the different input modalities that the system recognizes
 - the user is responsible for initiating the actions
2. Computer as a dialogue partner
 - the multiple modalities are used to increase the anthropomorphism of the user interface
 - agent-based conversational user interfaces
 - multimodal output is important: talking heads and other human-like presentation modalities
 - speech recognition is a common input modality in these systems, and speech synthesis is used as an output modality
Paradigms of Multimodal Interaction

3. Proactive computing
 - used in ambient intelligence, Perceptual User Interface
 - the multiple modalities are used to sense the user and the environment
 - multimodal (multisensory) input is important
 - the functionality of the system depends on the level of deduction the system is capable of
 - proactive functionality is often in the background and only indirectly visible (transparent) for the user, predicting his/her actions and needs.