4.1 Interval Scheduling
Interval scheduling.

- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.
Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_j.

- [Earliest finish time] Consider jobs in ascending order of finish time f_j.

- [Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.

- [Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- Breaks earliest start time
- Breaks shortest interval
- Breaks fewest conflicts
Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it’s compatible with the ones already taken.

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

```
// jobs selected

A ← ∅
for j = 1 to n {
    if (job j compatible with A)
        A ← A ∪ {j}
}
return A
```

Implementation. \(O(n \log n) \).
- Remember job \(j^* \) that was added last to \(A \).
- Job \(j \) is compatible with \(A \) if \(s_j \geq f_{j^*} \).
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let \(i_1, i_2, \ldots, i_k \) denote set of jobs selected by greedy.
- Let \(j_1, j_2, \ldots, j_m \) denote set of jobs in the optimal solution with
 \(i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r \) for the largest possible value of \(r \).
Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.
- Let j_1, j_2, \ldots, j_m denote set of jobs in the optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.

```
Greedy:  i_1    i_1    i_r    i_{r+1}
OPT:     j_1    j_2    j_r    i_{r+1} ...
```

Job i_{r+1} finishes before j_{r+1}

Solution still feasible and optimal, but contradicts maximality of r.
4.1 Interval Partitioning
Interval Partitioning

Interval partitioning.
- Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \).
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.
Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.

Ex: Depth of schedule below = 3 \Rightarrow schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?
Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that $s_1 \leq s_2 \leq \ldots \leq s_n$.

d ← 0 — number of allocated classrooms

for j = 1 to n {
 if (lecture j is compatible with some classroom k)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ← d + 1
}

Implementation. $O(n \log n)$.
- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.
- Let \(d \) = number of classrooms that the greedy algorithm allocates.
- Classroom \(d \) is opened because we needed to schedule a job, say \(j \), that is incompatible with all \(d-1 \) other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than \(s_j \).
- Thus, we have \(d \) lectures overlapping at time \(s_j + \varepsilon \).
- Key observation \(\Rightarrow \) all schedules use \(\geq d \) classrooms.