5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given \(n\) points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points \(p\) and \(q\) with \(\Theta(n^2)\) comparisons.

1-D version. \(O(n \log n)\) easy if points are on a line.

Assumption. No two points have same \(x\) coordinate.

\[\text{fast closest pair inspired fast algorithms for these problems}\]
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure \(n/4 \) points in each piece.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer**: find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

— seems like $\Theta(n^2)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta \).
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

$\delta = \text{min}(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.
- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$\delta = \min(12, 21)$
Closest Pair of Points

Def. Let \(s_i \) be the point in the \(2\delta \)-strip, with the \(i^{th} \) smallest \(y \)-coordinate.

Claim. If \(|i - j| \geq 12 \), then the distance between \(s_i \) and \(s_j \) is at least \(\delta \).

Pf.
- No two points lie in same \(\frac{1}{2} \delta \)-by-\(\frac{1}{2} \delta \) box.
- Two points at least 2 rows apart have distance \(\geq 2(\frac{1}{2} \delta) \).

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Closest-Pair(p₁, …, pₙ) {
 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.

 return δ.
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T(n/2) + O(n \log n) \implies T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by \(y \) coordinate, and all points sorted by \(x \) coordinate.
 - Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n) \]