Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size \(n \) into two equal parts of size \(\frac{1}{2}n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
5.1 Mergesort
Sorting

Sorting. Given \(n \) elements, rearrange in ascending order.

Obvious sorting applications.
- List files in a directory.
- Organize an MP3 library.
- List names in a phone book.
- Display Google PageRank results.

Problems become easier once sorted.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.

Non-obvious sorting applications.
- Data compression.
- Computer graphics.
- Interval scheduling.
- Computational biology.
- Minimum spanning tree.
- Supply chain management.
- Simulate a system of particles.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

\[\ldots \]
Mergesort

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

\[\text{divide } O(1) \]
\[\text{sort } 2T(n/2) \]
\[\text{merge } O(n) \]
Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored.

In-place merge.

using only a constant amount of extra storage
A Useful Recurrence Relation

Def. $T(n)$ = number of comparisons to merge sort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases} \]
Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

| assumes n is a power of 2 |

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + \frac{n}{n} & \text{otherwise}
\end{cases}
\]

Pf. For $n > 1$:

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1
\]

\[
= \frac{T(n/2)}{n/2} + 1
\]

\[
= \frac{T(n/4)}{n/4} + 1 + 1
\]

\[
\vdots
\]

\[
= \frac{T(n/n)}{n/n} + 1 + \cdots + 1
\]

\[
= \log_2 n
\]
Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + n & \text{otherwise}
\end{cases}
\]

Pf. (by induction on n)

- Base case: $n = 1$.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n(\log_2 (2n) - 1) + 2n \\
= 2n \log_2 (2n)
\]
Analysis of Mergesort Recurrence

Claim. If \(T(n) \) satisfies the following recurrence, then \(T(n) \leq n \lfloor \log n \rfloor \).

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
\underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve left half}} + \underbrace{T(\lceil n/2 \rceil)}_{\text{solve right half}} + \underbrace{n}_{\text{merging}} & \text{otherwise}
\end{cases}
\]

Pf. (by induction on \(n \))

- Base case: \(n = 1 \).
- Define \(n_1 = \lfloor n / 2 \rfloor \), \(n_2 = \lceil n / 2 \rceil \).
- Induction step: assume true for 1, 2, \ldots, \(n-1 \).

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \log n_1 \rceil + n_2 \lceil \log n_2 \rceil + n \\
\leq n_1 \lceil \log n_2 \rceil + n_2 \lceil \log n_2 \rceil + n \\
= n \lceil \log n_2 \rceil + n \\
\leq n(\lceil \log n \rceil - 1) + n \\
= n \lceil \log n \rceil
\]

\[
n_2 = \lceil n/2 \rceil \\
\leq 2^{\lfloor \log n \rfloor} / 2 \\
\leq 2 \lfloor \log n \rfloor / 2 \\
\Rightarrow \log n_2 \leq \lfloor \log n \rfloor - 1
\]
5.3 Counting Inversions
Music site tries to match your song preferences with others.
- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- My rank: 1, 2, ..., n.
- Your rank: \(a_1, a_2, ..., a_n \).
- Songs i and j inverted if \(i < j \), but \(a_i > a_j \).

Brute force: check all \(\Theta(n^2) \) pairs i and j.

Songs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Inversions

3-2, 4-2
Applications

Applications.
- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide**: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7

Divide: $O(1)$.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

Divide: O(1).
Conquer: 2T(n / 2)

5 blue-blue inversions
5-4, 5-2, 4-2, 8-2, 10-2

8 green-green inversions
6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{array}{ccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: \(O(1) \).

\[
\begin{array}{ccccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

5 blue-blue inversions

8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Conquer: \(2T(n/2) \)

Combine: ???

Total = 5 + 8 + 9 = 22.
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where \(a_i \) and \(a_j \) are in different halves.
- **Merge** two sorted halves into sorted whole.

\[
T(n) \leq T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)
\]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}