A reduction is poly-time efficient if it runs in polynomial time.

We denote as \(L \leq_p L' \) (Karp, many-one reduction)

Suppose \(L \leq_p L' \).

(R) None of these.
(G) \(L \in P \), \(L' \in P \).
(A) \(L \in P \), \(L' \in P \).
(G) \(L \in P \), \(L' \in P \).

Suppose deciding \(L \) efficiently is a long-standing open problem. I prove \(L \leq_p L' \). This

(R) I should give up on solving \(L \).
(G) I should still try to work on \(L' \).
(A) This is an indication that \(L \) is hard to solve

Is \(L \leq_p L' \) for all \(L \in P \) and non-trivial \(L' \)?

Theorem: Def. \(L \) is NP-complete if:

1. \(L \in \overline{P} \)
2. \(\forall M \in \overline{P}, M \leq_p L \)

Suppose I should some NP-complete problem is not in \(P \).

(R) All NP-complete problems are not in \(P \).
(G) All NP problems are not in \(P \).
(A) No implication about other NP problem.