Q. The universal TM is unique. T/F

Q. The language accepted by \(U \) is unique. T/F

\[L_u = \{ \langle M, x \rangle \mid M \text{ accepts } x \} \]

A universal TM has a bounded no. of states. There are only a finite number of TMs with a bounded no. of states. Thus a finite number of fns. account for all computation.

Q. There exists a bound \(k \) s.t.

(R) Any TM \(M \) can be converted to an equivalent TM \(M' \) with \(k \) states, simulated by.

(G) Any TM \(M \) can be converted to a TM with \(k \) states that is equivalent on some subset of inputs.

(2) Neither of the above

This row contains all other rows!

Q. There exists a rows s.t.

every other row is a subsequence of this row. Given \(M_i, j \) one can compute \(f(M_i, j) \) s.t. \(M_u (f(M_i, j)) = M_i (j) \).

Thm [Hennie & Stearns 66]: There exists a universal \(U \) s.t. if \(M_x \) halts on \(x \) in \(T \) steps, \(U(x, x) \) halts in \(C T \log T \) steps, where \(C \) only depends on \(M_x \).
Thus: If M halts on x in t steps U(<M>, x) halts in C t^2 steps (where C depends only on M's alphabet, number of states, and number of steps).

Pf: U determines no. of steps, alphabet, and number of states. U has work tapes.

Each move of <M> on x takes O(\log \Sigma) T, where T is runtime of <M> on x.

1. U reads current state and current symbol of <M>
2. U determines transition.
3. U implements this transition.

Reading assignments: undecidability, efficient simulation of TM
1.5, 1.7, 9.1 of HMU

Q. M is always faster than M' on all inputs. U(<M>, x) is always faster than U(<M'>, x).

Q. M's run time is exactly C|x| and M's is exactly C'x^2

(a) U(<M>, x) always halts faster than U(<M'>, x)
(b) U(<M>, x) always faster than U(<M'>, x) for sufficiently large |x|
(b) Run times of U(<M>, x) and U(<M'>, x) are incomparable.