Consider L according to new definition. Construct a new machine M' that simply makes a non-deterministic guess about the next symbol in y. Thus, it can simulate the presence of y without any storage with at most constant storage.

The Immerman–Szelepsényi Theorem

$\text{NL} = \text{co-NL}$ Complementation does not change non-deterministic space class!

$\text{NSPACE}(s(n)) = \text{co-NSPACE}(s(n))$ (by padding)

PATH is NL-complete. So PATH is co-NL-complete.

If we show $\text{PATH} \in \text{NL}$, then

$\forall A \in \text{co-NL}, A \leq_{\text{P}} \text{PATH}$, so $A \in \text{NL}$

Thus $\text{co-NL} \subseteq \text{NL} \subseteq \text{co-NL}$

$\text{PATH} = \{ \langle G, s, t \rangle \mid G$ is directed and there is no path from s to $t \}$

$\text{PATH} \in \text{NL}$ is obvious, but how can we generate read-once certificate for PATH?

(For $\langle G, s, t \rangle \in \text{PATH}$, read-once certificate is the path from s to t.)
Thus: \(\text{PATH} \in \text{NL} \)

Pf: Think in terms of certificates. You'll go nuts thinking about a non-deterministic logspace machine.

Define \(\text{PATH}_i = \{ \langle G, s, t \rangle \mid \text{There is no path of length } \leq i \text{ from } s \text{ to } t \} \)

\(\text{PATH}_0 \) is trivial. Why?

\(\text{PATH}_1 \) is in NL. Why?

Consider \(\text{PATH}_2 \). How to certify that \(d(s, t) > 2 \)? (Define \(d(s, v) \) to be shortest path between \(s \) and \(v \).)

If we show: \(\Gamma^-(t) \cap \Gamma^+(s) = \emptyset \), we're done.

First try: Certificate is \(\Gamma^+(s) : v_i, v_{i-1}, \ldots, v_1 \)

1. For \(v \) in \(v_i, v_{i-1}, \ldots, v_1 \) (in order)
 a. Check if \(v \) is in \(\Gamma^+(s) \). (logspace)
 b. Check if \(v \) is in \(\Gamma^-(t) \). (logspace)
 c. If yes, reject
 d. If not, reject

But there could be some \(v \in \Gamma^+(s) \) that is NOT in our certificate.

So, we first compute \(d^+ \) and make sure \(d = d^+ \).

How do we know some \(v \) isn't repeated?

Force \(v_i \)'s to be in ascending order of id.
Thus, for any \(v \), we have certificate for \(d(s,v) > 2 \). There is obvious certificate for \(d(s,v) \leq 2 \).

Now for \(\text{PATH}_2 \). We need to show \(\Gamma(v) \cap B^+(s,2) = \emptyset \).

Certificate is \(B^+(s,2) \) in order. But, after each \(v \in B^+(s,2) \), we need certificate that \(v \notin B^+(s,2) \). Easy, just take the path from \(s \) to \(v \) of length 2.

\[
\begin{aligned}
v_1 &\rightarrow s \rightarrow v_2, \\
v_2 &\rightarrow s \rightarrow v_3, \\
v_3 &\rightarrow s \rightarrow v_4, \\
&\ldots
\end{aligned}
\]

\[\text{init} \]
1. On seeing \(v_i \), store it.
2. Verify \(s \rightarrow v_i \) is correct. (If not, reject.)
3. Check if \(t \) is a neighbor of \(v_i \). If so, reject.

But we also need the sign of \(B^+(s,2) \) (call it \(C_2 \)).

This can be part of the certificate, but how can it be verified?

This is by using the \(d(s,v) > 2 \) certificates!

\[
C_2 \quad s \rightarrow 1 \rightarrow s \rightarrow 2 \quad s \rightarrow 3 \rightarrow s \rightarrow 4 \quad \ldots
\]

Verify that \(C_2 \) is correct. Logspace machine can forget everything.

Now the list of \(B^+(s,2) \) is repeated \(n \) times to certify each \(v \in B^+(s,2) \) or \(v \notin B^+(s,2) \).

\[
\begin{aligned}
v_1 &\rightarrow v_4 \leftarrow v_1, \\
v_1 &\rightarrow v_4 \leftarrow v_1, \\
&\ldots
\end{aligned}
\]

\[n \text{ times}
\]

\[
C_3
\]
Thus, length of certificate for $|G_i|$, denote L_i

$$L_i \leq L_{i-1} + O(n^3 \log n) \quad L_i = O(n^4 \log n)$$

For v_i, v_j, \ldots, v_k in $B^+(s, i-1)$

\[\begin{array}{c|c|c|c}
 v_1 & \ldots & v_i & \ldots & v_k \\
 \hline
 s & \sim & v_i & \sim & s & \sim & v_k \\
 \end{array} \]

Repeat n times