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1 The k-multiway cut problem

In the previous lecture, we saw how one could relax integer problems to some corresponding
linear program, and use rounding schemes to get approximation algorithms. In the next two
lectures, we will do a detailed study of the classic k-way multicut problem in this context.

Problem: Given undirected G = (V,E) with weights ce on the edges and k terminals
s1, . . . , sk, remove a set of edges of minimum cost that separates all terminals.

For k = 2, this is precisely the s− t mincut problem, which is polynomial time solvable.
For k ≥ 3, the k-multiway cut problem is NP-hard. As we show below, a simple greedy
heuristic yields a 2(1 − 1/k)-approximation. We will also show an LP rounding scheme
that yields the same approximation factor. But careful think about the LP leads to deep
insights into relating LP solutions to metrics over vertices. These insights form the basis
of the Calinescu-Karloff-Rabani (CKR) relaxation and rounding, which leads to a 3/2-
approximation. We will cover details on the CKR approach in the next lecture.

1.1 The isolating cut heuristic

The first result on multiway cut was given by Dahlhaus-Johnson-Papadimitriou-Seymour-
Yannakakis, 92. A simple approach to multiway cut is to find mincuts between a single
terminal and all of the other terminals. Such a cut can be found by a single mincut com-
putation (Exercise). From terminal si, this process leads to a cut (Si,Si), where si ∈ Si.
We use c(δ(Si)) to denote the cost of this cut.

We can remove all the δ(Si)s to get a valid multiway cut. A nice observation is that it
suffices to only remove k − 1 of them, so we can improve on the output cost.

Isolating cut heuristic(G, s1, . . . , sk)
1. For each i, compute Si using a mincut procedure.
2. Output the k − 1 smallest δ(Si) cuts.

Claim 1.1. The output is a valid multiway cut.

Proof. By removing δ(Si) for k−1 choices of si, each of these (k−1) terminals is separated
from all of the other terminals. But the remaining terminal (for which the algorithm did
not remove δ(Si)) is also disconnected from the other terminals. But that means each of
these k − 1 terminals is also separated from the k-th terminal, which implies that this is a
valid k-multiway cut.

Now that we’ve proved that this is a valid multiway cut, we look at how good it is
compared to the optimal.

Claim 1.2. The cost of the output is at most 2(1− 1/k) times the optimal multiway cut.



Proof. The optimal solution removes some set of edges C to separate all of the Si’s from
each other. Hence, removal of C leads to at least k connected components, with at most
one terminal in each component. Let Ci be the component contains si. Since δ(Ci) is a cut
separating si from the remaining terminals and δ(Si) is the optimal such cut, c(δ(Si)) ≤
c(δ(Ci)).

Summing over all i,
∑k

i=1 c(δ(Si)) ≤
∑k

i=1 c(δ(Ci)). Observe that in the latter sum, each
edge of C is counted at most twice. (Each edge can be part of at most two cuts δ(Ci).) Let
OPT denote the cost of C and ALG denote the cost of the algorithm’s output.

Since ALG is the cost of the low (k − 1) cuts, we deduce

ALG ≤ k − 1

k
·

k∑
i=1

c(δ(Si)) ≤ (1− 1/k)
k∑

i=1

c(δ(Ci)) ≤ 2(1− 1/k)OPT

As a direct consequence, we have the following theorem. Note that for k = 2, we get
back the exact algorithm for s-t mincut. (So there is a “conceptual” benefit for taking the
smallest (k − 1) cuts.)

Theorem 1.3. There is a polytime 2(1 − 1/k)-approximation for undirected k-multiway
cut.

2 The LP approach

Let us start by writing the LP for the mincut problem (k = 2), and see how to generalize
for larger k.

min
∑

cexe

∀(u, v) ∈ E, d(v) ≤ d(u) + xe

d(s) = 0, d(t) = 1

∀e xe ≥ 0

This LP is integral, as we’ve seen in the past. Moreover, we have a rounding scheme
by Garg-Vazirani-Yannakakis, as discussed in the earlier lecture on the maxflow-mincut
theorem. We pick a value r ∼ U [0, 1), and choose S = {v|dv ≤ r}. This gives an optimal
integral solution.

Note that we had two kinds of variables in the LP: distance variables, and edge selection
variables. To generalize the LP to larger k, we follow the same strategy of using distance
variables. We have variables di(v) to be the distance of terminal si from vertex v, and
retain xe as earlier. We set the distance between all pairs (si, sj) ≥ 1 for any two distinct
terminals. Our LP is then:

min
∑

cexe

∀(u, v) ∈ E,∀i ∈ [k], di(v) ≤ di(u) + xe

∀i, j ∈ [k], i 6= j di(si) = 0, di(sj) ≥ 1

∀e xe ≥ 0
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To see that this a valid relaxation for the multiway cut IP, let xe be the indicator for a
valid multicut. The shortest path distances between all pairs of terminals are at least one,
since they all lie in different connected components.

Let us look at randomized rounding methods for this LP. We start with a naive extension
of the mincut rounding, and see why it doesn’t work. All the schemes discussed will produce
“isolating” sets Si, each of which contain a single terminal. Thus, they follow the same high-
level strategy of the isolating cut algorithm.

Rounding Scheme, Attempt #1: Let’s just follow what we did for standard mincut.
We pick a value r ∼ U [0, 1), and define Si = {v|di(v) ≤ r}. Since ∀i 6= j, di(sj) ≥ 1,
each Si contains only one terminal. This gives us a valid mincut. We now need to bound
the expected cost of the cut. As in the mincut analysis, let Xe be the indicator random
variable for edge e being cut. We wish to bound E[

∑
eXe] =

∑
eE[Xe] =

∑
e Pr[e is cut].

So, if we can upper bound the probability that an edge (u, v) is cut by αxuv, then we get
an α-approximation ratio.

We can think of k (or k− 1) iterations, where each iteration cuts some δ(Si). The edge
(u, v) may be cut in any iteration. What is the probability that (u, v) is cut in the iteration
corresponding to δ(Si)? Wlog, let us assume that di(u) ≤ di(v). The edge (u, v) is cut
precisely when r ∈ [di(u), di(v)).

Pr[r ∈ [di(u), di(v))] = di(v)− di(u) ≤ xuv (1)

The probability that (u, v) is cut in one of (k − 1) iterations is at most 1− (1− xuv)k−1 ≈
(k − 1)xuv; this is dreadful, because we already had a 2 approximation from the isolating
cut approach!

2.1 The optimal rounding scheme

The problem with the previous rounding scheme is that every iteration had some chance of
cutting (u, v), and the overall probability of cutting was too high. By exploiting the fact
that graph is undirected, we can ensure that at most two iterations will cut (u, v). This
will lead to the 2-approximation.

Our new scheme is: pick r ∼ U [0, 1/2), and define Si = {v|di(v) ≤ r}. Since r < 1, each
Si is an isolating set as desired. The following simple claim is key to the analysis.

Claim 2.1. For any vertex v, there is a unique terminal si such that di(v) < 1/2.

Proof. If not, there exist indices i 6= j such that di(v) < 1/2 and dj(v) < 1/2. Now, we use
triangle inequality of distances and the fact that the graph is undirected (so dist(v, sj) =
dist(sj , v)).

di(sj) = dist(si, sj) ≤ dist(si, v) + dist(v, sj) = di(v) + dj(v) < 1. (2)

This violates the distance constraint between the terminals.

Let si and sj be the two unique vertices (if they exist) at distance less than 1/2 from u
and v respectively. In the new rounding scheme, Si or Sj can cut (u, v).

Claim 2.2. Pr[∃b, (u, v) ∈ δ(Sb)] ≤ 2xuv.
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Proof. We split the proof into two cases. We call the two unique terminals si and sj as
above.
Case 1: si = sj: In this case, (u, v) can only be cut by δ(Si). Then Pr[(u, v) is cut] =
Pr[r ∈ [di(u), di(v))] = (di(v)− di(u))/0.5 ≤ 2xuv. The calculation here is identical to that
in (1), except that r is now in [0, 1/2) instead of [0, 1). The latter fact introduces the factor
of 2.
Case 2: si 6= sj: In this case, our probability is the union of two events. We will use the
bound Pr[(u, v) ∈ δ(Si)] ≤ (1/2− di(u))/(0.5) = 2(1/2− di(u)). By the union bound,

Pr[∃b, (u, v) ∈ δ(Sb)] ≤Pr[(u, v) ∈ δ(Si)] + Pr[(u, v) ∈ δ(Sj)]

≤ 2×
[

1

2
− di(u) +

1

2
− dj(v)

]
(3)

Consider a path from si to sj going from si to u, taking edge (u, v), and then from v to sj .
By triangle inequality 1 ≤ di(sj) ≤ di(u)+xu,v+dj(v). Rearranging, 1−di(u)−dj(v) ≤ xu,v.
Plugging this bound into the above, Pr[∃b, (u, v) ∈ δ(Sb)] ≤ 2xu,v as desired.

These claims lead to the following theorem.

Theorem 2.3. There is an LP rounding scheme that leads to a 2(1− 1/k)-approximation.

Proof. Just for completeness’ sake, let us write out the proof formally. Applying the round-
ing scheme where r ∼ U [0, 1/2), by Claim 2.2,

E[
∑
i

c(δ(Si)] =
∑
e

Pr[∃i, e ∈ δ(Si)] ≤ 2
∑
e

xe = 2 · cost(x)

Thus,
⋃

i δ(Si) is a 2-approximation for multiway cut. We can again turn this into a 2(1−
1/k) approximation by taking the k − 1 cheapest cuts among the δ(Si)’s.

This rounding scheme is optimal. We give a matching integrality gap.

Theorem 2.4. The integrality gap of the LP is at least 2(1− 1/k).

Proof. Consider a k-star, where all the leaves are terminals. We need to remove at least
k−1 edges to separate the terminals, so the optimal of the IP is at least k−1. (The optimal
value is k − 1.) For the LP, set xe = 1/2. The shortest path distance between all pairs of
terminals is exactly 1, so this solution is feasible. The cost of the LP is at most k/2. Thus
the integrality gap is at least (k − 1)/(k/2) = 2(1− 1/k).

3 Exercises

Easy exercises.
1. Consider a multiway cut instance. Give an efficient algorithm that computes the

optimal cut separating si from all the remaining terminals.
2. Argue that the integrality gap of the LP is exactly 2(1− 1/k).

Medium exercises.

1. Prove that the optimal multiway cut creates exactly k connected components, each
containing a different terminal.
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2. In the LP for multiway cut, we set di(sj) ≥ 1. Prove that if we replace these constraints
with equality constraints di(sj) = 1, then the LP is not a valid relaxation any longer.

3. For the integrality gap example in Theorem 2.4, prove that the LP optimum has value
exactly 2.

4. Consider the directed multiway cut problem where the input is a directed graph, and
we have to remove edges so that no terminal can reach any other terminal. Give a
k-approximation algorithm for this problem.
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