CMPS290A: Sublinear algorithms for graphs	Spring 2017
Lecture 10: 5/4/2017	
Lecturer: C. Seshadhri	Scribe: Nicole Johns

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

NB These notes only cover the second part of lecture 10

10.1 Proof the general tester for monotonicity on the hypercube works

Lemma 10.1
$$\sum_{1=d}^{\infty} \varepsilon_f, i = \Omega(\varepsilon_f)$$

We seek to prove that the average distance of the line is at least ε_f . To do this we will implement the sorting operator $S_i(g)$. This sorts g along every i - line.

Lemma 10.2 Suppose g is monotone along dimension $1, \ldots, i-1$. Examine $S_i(g)$

- 1. $S_i(g)$ is monotone along $1, \ldots, i$
- 2. For $j > i, \varepsilon_{S_{i(g)}, j} \leq \varepsilon_{g, j}$

In plain English, that the average distance along the j line in $S_{i(g)}$ is less than or equal to the average distance along the j line in g.

Sorting in the i-th dimension will not make things worse in the j-th dimension.

Now we must prove the correctness of the above lemma. We will do this by looking at each of the two parts individually. First we will prove that $S_i(g)$ is monotone along $1, \ldots, i$

Proof: Our goal is to sort columns in a $n \times n$ matrix and observe the subsequent changes in the rows. To do this we will use the following technique,

- 1. Select a sorting algorithm such as bubble sort
- 2. We only need to take two adjacent rows (r, r+1) and apply bubble sort. This gives us a $2 \times n$ sub-matrix
- 3. Sort columns in the sub-matrix and prove lemma sub properties hold

This allows us to concentrate on a simpler $2 \times n$ sub-matrix where there are only four possible choices, rather than a more complex $n \times n$ matrix.

The case analysis is left as an exercise.

We also still need to prove the second part of the lemma, "For $j > i, \varepsilon_{S_{i(g)}, j} \leq \varepsilon_{g, j}$ ".

Proof:

Consider that we have two rows, r and r + 1. We will then sort the columns.

The functions are initially f_r and f_{r+1} . After the transformation the functions become f'_r and f'_{r+1} .

We want to prove that,

$$\varepsilon_{f'_r} + \varepsilon_{f'_{r+1}} \le \varepsilon_{f_r} + \varepsilon_{f'_{r+1}}$$

Let A be the to closest monotone function to f_r , B the closest monotone function to f_{r+1} . We will also mark the point where the zeros change to ones as a and b respectively.

Suppose,

$$dist(f'_r, A) + dist(f'_{r+1}, B) \le dist(f_r, A) + dist(f_{r+1}, B)$$

By definition, $dist(f_r, A) + dist(fr + 1, B) = \varepsilon_{f_r} + \varepsilon_{f_{r+1}}$ and $dist(f'_r, A) + dist(f'_{r+1}, B) \le \varepsilon_{f'_r} + \varepsilon_{f'_{r+1}}$ since this is the maximum distance to monotonicity.

Case analysis:

If a < b, then $dist(f'_r, A) + dist(f_{r+1}, B) \le dist(f_r, A) + dist(f'_{r+1}, B)$ If a > b, then $dist(f'_r, B) + dist(f_{r+1}, A) \le dist(f_r, B) + dist(f'_{r+1}, B)$

References

- [GGLRS00] O. GOLDREICH, S. GOLDWASSER, E. LEHMAN, ET AL., Testing Monotonicity, Combinatorica 20 (2000), pp. 301–337.
- [DGL+00] Y. DODIS, O. GOLDREICH, E. LEHMAN, ET AL. Improved Testing Algorithms for Monotonicity, (2000), pp. 1-19.