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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

NB These notes only cover the second part of lecture 10

10.1 Proof the general tester for monotonicity on the hypercube
works

Lemma 10.1

∞∑
1=d

εf , i = Ω(εf )

We seek to prove that the average distance of the line is at least εf . To do this we will implement the sorting
operator Si(g). This sorts g along every i− line.

Lemma 10.2 Suppose g is monotone along dimension 1, . . . , i− 1.
Examine Si(g)

1. Si(g) is monotone along 1, . . . , i

2. For j > i, εSi(g),j ≤ εg,j

In plain English, that the average distance along the j line in Si(g) is less than or equal to the average distance
along the j line in g.

Sorting in the i-th dimension will not make things worse in the j-th dimension.

Now we must prove the correctness of the above lemma. We will do this by looking at each of the two parts
individually. First we will prove that Si(g) is monotone along 1, . . . , i

Proof: Our goal is to sort columns in a n× n matrix and observe the subsequent changes in the rows. To
do this we will use the following technique,

1. Select a sorting algorithm such as bubble sort

2. We only need to take two adjacent rows (r, r+1) and apply bubble sort. This gives us a 2×n sub-matrix

3. Sort columns in the sub-matrix and prove lemma sub properties hold

This allows us to concentrate on a simpler 2×n sub-matrix where there are only four possible choices, rather
than a more complex n× n matrix.
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The case analysis is left as an exercise.

We also still need to prove the second part of the lemma, “For j > i, εSi(g),j ≤ εg,j”.

Proof:
Consider that we have two rows, r and r + 1. We will then sort the columns.

The functions are initially fr and fr+1. After the transformation the functions become f ′
r and f ′

r+1.

We want to prove that,
εf ′

r
+ εf ′

r+1
≤ εfr + εf ′

r+1

Let A be the to closest monotone function to fr, B the closest monotone function to fr+1. We will also
mark the point where the zeros change to ones as a and b respectively.

Suppose,
dist(f ′

r, A) + dist(f ′
r+1, B) ≤ dist(fr, A) + dist(fr+1, B)

By definition, dist(fr, A) + dist(fr + 1, B) = εfr + εfr+1
and dist(f ′

r, A) + dist(f ′
r+1, B) ≤ εf ′

r
+ εf ′

r+1
since

this is the maximum distance to monotonicity.

Case analysis:
If a < b, then dist(f ′

r, A) + dist(fr+1, B) ≤ dist(fr, A) + dist(f ′
r+1, B)

If a > b, then dist(f ′
r, B) + dist(fr+1, A) ≤ dist(fr, B) + dist(f ′

r+1, B)
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