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1 Two of Talagrand’s Inequalities

Theorem 1.1 Let Ω = Ω1 × · · · × Ωn and P = µ1 ⊗ · · · ⊗ µn a product probability measure on Ω.
Then for all nonempty measurable subsets A ⊂ Ω,∫

Ω
edC(x,A)2/4dP (x) ≤ 1/P (A) (1)

where dC(x,A) is the convex distance (TBD) from x to A. As a consequence, by Chebyshev’s
inequality we have

P (Act) ≤
1

P (A)
e−t

2/4 (2)

where At = {x ∈ Ω : dC(x,A) ≤ t}.

Corollary 1.2 Let X = (X1, . . . , Xn) be a random variable with independent components taking
values in [0, 1]. Let F : Rn → R be a convex 1-Lipschitz function. Let MF (X) be a median for
F (X). Then for all t ≥ 0

P (|F (X)−MF (X)| ≥ t) ≤ 4e−t
2/4 (3)

We first present a nice immediate application of the corollary.

Let M be an n × n Hermitian matrix. Then the largest eigenvalue λ1(M) = ||M ||op. Considering
the operator norm of M as a function of the n2 components of the entries (the n real diagonal en-
tries and the n(n−1) real and imaginary parts of the entries above the diagonal), we see that it is a
convex and 1-Lipschitz function from Rn2

with Euclidean distance to R+. Indeed, convexity follows
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from the triangle inequality for the operator norm, and 1-Lipschitz follows from ||M ||op ≤ ||M ||2
(where the Frobenius norm on n× n matrices is the Euclidean norm on Rn2

).

Hence, if X is a random Hermitian matrix - where the diagonal entries and the real and imaginary
parts of the strict upper-triangle entries are independent bounded scalar random variables, and we
identify the space of Hermitian matrices with Rn2

, then by Talagrand’s inequality we have that
the random variable λ1(X) is concentrated around its mean with sub-Gaussian tails independent
of n. This is especially interesting as it turns out that λ1(X) is of order

√
n.

2 Talagrand’s proof

2.1 The convex distance

First we must define the convex distance, which is a primitive notion of distance between a point
and a set that is somewhat opaque at first. It does not, in fact, come from a metric in the usual way.

Let Ω as in the theorem, and let A ⊂ Ω, x ∈ Ω. We define UA(x) ⊂ {0, 1}n

UA(x) = {s ∈ {0, 1}n : ∃y ∈ A with yi = xi whenever si = 0}. (4)

If Ω is such that we are allowed to subtract elements, we can slightly more intuitively say that a
vector s = (s1, . . . , sn) in the binary cube supports a vector z ∈ Ω if zi 6= 0 only when si = 1, and
define UA(x) to be the set of vectors in the binary cube that support some element of A−x. (Indeed
when we prove the corollary we will have Ω = [0, 1]n, so we will have vector space structure.) One
can internalize the elements s ∈ UA(x) as (rather coarse) travel plans: if a 0−1 vector s is in UA(x),
it means that starting at x, to get to A it is sufficient to vary only the coordinates i for which si is 1.

Now let VA(x) ⊂ Rn be the convex hull in of UA(x). We define dC(x,A) = dE(0, VA(x)).

(Some illustrations would be helpful.)

2.2 Proof of the Corollary

The corollary uses the notation of probability, while the theorem uses the integral symbol. We’ll
use the former here.

We first recall that a median MX for a random variable X is a real number satisfying the inequal-
ities P (X ≥ MX) ≥ 1/2 and P (X ≤ MX) ≥ 1/2. (If X is an absolutely continuous random
variable we can take equality for both).

Key in the passage from 1.1 to 1.2 is the observation that for the special case of A convex in [0, 1]n,
the convex distance controls the Euclidean distance.

Lemma 2.1 Let A convex in [0, 1]n and x ∈ [0, 1]n. Then dE(x,A) ≤ dC(x,A).
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We postpone the proof of this lemma, and note that the lemma and the theorem imply

EedE(X,A)2/4 ≤ 1/P (X ∈ A)

for any convex subset A of [0, 1]n. From here it is a short walk to 1.2. Indeed, let a ≥ 0 and take
A = {F ≤ a}. Observe that by the Lipschitz property, if X ∈ {F ≥ a + t} for some t ≥ 0, then
dE(X,A) ≥ t. Then by applying Chebyshev’s inequality to the LHS of (7), we have

P (F (X) ≥ a+ t)et
2/4 ≤ 1/P (F (X) ≤ a).

Now taking a = MF (X) we get the upper tail estimate

P (F (X)−MF (X) ≥ t) ≤ 2e−t
2/4

and taking a = MF (X)− t we get the lower tail estimate

P (F (X)−MF (X) ≤ −t) ≤ 2e−t
2/4

(where the definition of median has given us the prefactors 2). The desired result follows from
union bound. �

Proof of Lemma 2.1 Suppose dC(x,A) ≤ t. Then by definition of convex distance, there exists
a convex combination w =

∑m
i=1 λi~si of vectors ~si ∈ UA(x) 1 ≤ i ≤ m such that ||w||E ≤ t.

Now for each i, ~si ∈ UA(x) means there exists ~zi ∈ A − x supported by ~si. Let z =
∑m

i=1 λi~zi.
Then z ∈ A − x by convexity. zi ∈ [0, 1]n implies that each component of ~zi is bounded by
1, and since each component is only nonzero when the corresponding component of ~si nonzero,
we have that each component of ~zi is bounded by the corresponding component of ~si. Thus,
dE(x,A) ≤ ||z||E ≤ ||w||E ≤ t, and the claim follows. �

2.3 Proof of the isoperimetric inequality

We now present Talagrand’s proof of (1) by induction on n. For the case n = 1, note that
dC(x,A) = 0 if x ∈ A and dC(x,A) = 1 if x is not in A. Now we must show

e1/4(1− P (A)) + P (A) ≤ 1/P (A)

which follows from e1/4(1− u) + u ≤ 1/u for all u ∈ [0, 1]. The case n = 1 is established.

For the inductive step we need a Lemma:

Lemma 2.2 a) For all u in (0, 1] we have

inf
λ∈[0,1]

e(1−λ)2/4u−λ ≤ 2− u. (5)

b) e1/4 ≤ 2 (Pf: e ≤ 24)

Proof If u ≥ e−1/2 take θ = 1 + 2 log u. Otherwise take θ = 0. Then do calculus. �
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Assume the result holds for n. Let Ω′ = Ω1 × · · · × Ωn a product probability space with product
measure P , and let Ωn+1 be another probability space with measure µn+1. Let Ω = Ω′×Ωn+1. Let
A ⊂ Ω and x ∈ Ω. The proof of the result for n+ 1 follows these steps:

1. Obtain an inequality for dC(x,A) from consideration of “slices” and the “projection” of A in
Ω′, and convexity.

2. Apply Hölder’s inequality and the induction hypothesis.

3. Optimize using the Lemma.

4. Fubini.

For a point z ∈ Ω we write z = (z′, ω), z′ ∈ Ω′, ω ∈ Ωn+1. Let A(ω) = {z′ ∈ Ωn : (z′, ω) ∈ A} be
the ω-slice of A, and B =

⋃
ω∈ΩA(ω) be the projection of A to Ωn. Let x = (x′, ω) ∈ Ωn+1. The

key observation that gets the proof rolling is that we can bound the convex distance dC(x,A) in
terms of the distances to the sections Aω and the projection B.

We again think of the s ∈ UA(x) as listing the coordinates it is sufficient to vary along in order to
get from x to A. We see two ways to get to A from x = (x′, ω): if A(ω) is nonempty then we can
get there by leaving the n+ 1 coordinate ω fixed and varying the other coordinates (for which we
would consult the travel plans in UA(ω)(x

′)); we can also leave ω fixed and walk into B, which is
the shadow of A in Ω′, and then move up or down to get into A.

Phrasing these two travel plans in terms of UA(x), UA(ω(x′), and UB(x′), we have that if s ∈
UA(ω)(x

′) then (s, 0) ∈ UA(x). If t ∈ UB(x′) then (t, 1) ∈ UA(x).

Taking convex hulls, if ξ ∈ VA(ω)(x
′) and ζ ∈ VB(x′), then (ξ, 0) and (ζ, 1) are in VA(x), and by

convexity, λ(ξ, 0) + (1 − λ)(ζ, 1) ∈ VA(x) for all λ ∈ [0, 1]. Hence we have for all λ ∈ [0, 1] and
conditional on A(ω) nonempty

dC(x,A) ≤ |λ(ξ, 0) + (1− λ)(ζ, 1)|E
= |(λξ + (1− λ)ζ, 1− λ)|E

and by convexity of u 7→ |u|2E on R,

dC(x,A)2 ≤ |λξ + (1− λ)ζ|2E + (1− λ)2 ≤ λ|ξ|2E + (1− λ)|ζ|2E + (1− λ)2.

Since ξ and ζ were arbitrary we have

dC(x,A)2 ≤ λdC(x′, A(ω))2 + (1− λ)dC(x′, B)2 + (1− λ)2.

In the case that x = (x′, ω) is such that A(ω) is empty, the only plans to get from x to A are of the
form (t, 1) for some t ∈ UB(x′), and we get the same estimate as above with λ = 0. (Note that B
nonempty since A is assumed to be nonempty.)

4



Nicholas Cook Notes on Talagrand’s inequalities May 7, 2012

Talagrand notes that the main trick of the proof is to resist the temptation to optimize in λ at this
point! Instead we fix ω, exponentiate the inequality and integrate over Ω′. Conditional on A(ω)
nonempty we have

∫
Ωn

edC((x′,ω),A)2/4dP (x′) ≤ e(1−λ)2/4

∫
Ωn

eλdC(x′,A(ω))2/4e(1−λ)dC(x′,B)2/4dP (x′)

≤ e(1−λ)2/4

(∫
Ωn

edC(x′,A(ω))2/4dP (x′)

)λ(∫
Ωn

edC(x′,B)2/4dP (x′)

)1−λ

≤ e(1−λ)2/4

(
1

P (A(ω))

)λ( 1

P (B)

)1−λ

=
1

P (B)
e(1−λ)2/4

(
P (A(ω))

P (B)

)−λ
,

where we have applied Hölder’s inequality and the induction hypothesis. In the case that A(ω) is
empty we have ∫

Ω′
edC(x′,ω),A)2/4dP (x′) ≤ 1

P (B)
e(1−λ)2/4.

We now optimize λ by applying the lemma. For A(ω) nonempty we apply part (a) of the lemma
with u = P (A(ω))/P (B) (which is in [0, 1] by monotonicity of P ) to obtain∫

Ωn

edC((x′,ω),A)2/4dP (x′) ≤ 1

P (B)

(
2− P (A(ω))

P (B)

)
. (6)

For A(ω) empty, applying part (b) of the lemma gives the same estimate. Now we have

∫
Ω

∫
Ωn

edC((x′,ω),A)2/4dP (x′)dµ(ω) ≤ 1

P (B)

(
2− P ⊗ µ(A)

P (B)

)
=

1

P ⊗ µ(A)

P ⊗ µ(A)

P (B)

(
2− P ⊗ µ(A)

P (B)

)
≤ 1

P ⊗ µ(A)

where the last inequality follows from u(2− u) ≤ 1 for all u ∈ R. �

Remark One might wonder what rationale would lead one to seek and apply a bound like that of
Lemma 2.2. A clear motivation is that to apply Fubini’s theorem to integrate out the ω dependence
we would like the right hand side of (6) to be a linear function of P (A(ω)).

3 The Herbst argument for the upper tail

We present here a different argument of Ledoux for the upper tail

P (F (X)− EF (X) ≥ t) ≤ Ce−ct2

5
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of Corollary 1.2, (with the mean replaced by the median) based on a log-Sobolev inequality. The
presentation here closely follows that of [Ta2012]. First by a standard regularization argument we
may assume that F is smooth. We first establish the following log-Sobolev inequality:

Lemma 3.1 Let F : Rn → R be a smooth convex function with gradient bounded by 1. Then

E(F (X)eF (X)) ≤ (EeF (X))(logEeF (X)) + CE(eF (X)|∇F (X)|2) (7)

for some absolute constant C independent of n.

Proof We begin with the n = 1 case. The trick is to introduce an independent copy Y of the
random variable X in order to take advantage of the Lipschitz hypothesis. Indeed, for such a Y we
note that

E(F (X)− F (Y ))(eF (X) − eF (Y )) = 2EF (X)eF (X) − 2EF (X)EeF (X)

so that the left hand side of (7) can be rewritten

EF (X)EeF (X) +
1

2
E(F (X)− F (Y ))(eF (X) − eF (Y )).

The first term can be bounded by the first term on the right hand side of (7) with Jensen’s inequality.
For the second term, note that by F Lipschitz and X,Y bounded we have

F (X)− F (Y ) = O(|∇F (X)|)

and

eF (X) − eF (Y ) = O(eF (X)|∇F (X)|)

which give the claim.

Now we assume the claim for n− 1, and write X = (X ′, Xn), where X ′ = (X1, . . . , Xn−1). Condi-
tioning on Xn we can apply the induction hypothesis to get

E(F (X)eF (X)|Xn) ≤ f(Xn)ef(Xn) + CE(eF (X)|∇′F (X)|2|Xn) (8)

where f(Xn) := logE(eF (X)|Xn), and ∇′ is the n− 1-dimensional gradient. For the expectation of
first term on the right hand side, we can apply the n = 1 case to get

Ef(Xn)ef(Xn) ≤ Eef(Xn) logEef(Xn) + C ′E(ef(Xn)|f ′(Xn)|2). (9)

The first term on the right is just EeF (X) logEeF (X). As for the second term, we note that by the
chain rule

f ′(Xn) = e−f(Xn)E(eF (X)Fxn(X)|Xn).

Squaring this and applying the Cauchy-Schwarz inequality to the conditional expection gives

6
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|f ′(Xn)|2 ≤ e−2f(Xn)E(eF (X)|Xn)E(eF (X)|Fxn(X)|2|Xn)

= e−f(Xn)E(eF (X)|Fxn(X)|2|Xn).

Inserting this in (9) and combining our estimates in (8) completes the induction. �

To deduce the upper tail estimate, we apply the above lemma to sF for s > 0:

EsF (X)esF (X) ≤ (EesF (X))(logEesF (X)) + Cs2EesF (X).

If we let H(s) = EesF (X), we can rewrite the above as the differential inequality

d

ds
(
1

s
logH(s)) ≤ C.

On the other hand, from Taylor expansion we see that

1

s
logH(s)→ EF (X)

as s→ 0. Combining these estimates we have

1

s
logH(s) ≤ EF (X) + Cs

which we rewrite as

EesF (X) ≤ esEF (X)+Cs2 .

The claim now follows from Markov’s inequality and optimizing in s. �

4 Necessity of the convexity hypothesis

The convexity hypothesis in Corollary 1.2 cannot be dropped, as demonstrated by the following
examples. The first was posted in the comments of [Ta], and the second is given in [Le2001].

Example 4.1 Consider the discrete cube {0, 1}n with Hamming (`1) distance and uniform product
measure. Let

F (x) = max(min(|x|1, n/2 +
√
n), n/2−

√
n)/n1/4.

This function is O(1)-Lipschitz with respect to Euclidean norm. Indeed, since F only has range
O(n1/4), it suffices to verify the Lipschitz property for |x− y|2 = O(n1/4). Then we have |x− y|1 =
|x− y|22 � n1/4|x− y|2.

The function can be extended to a O(1)-Lipschitz function on Rn which is not convex, and con-
centrates at scale O(n1/4) rather than O(1).

7
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Example 4.2 With the same metric measure space as above, let A be the “hereditary set”
{y :

∑n
i=1 yi ≤ n/2} (such sets {y :

∑n
i=1 yi ≤ λ} are the isoperimetric analogues of unit balls

in Euclidean space with Lebsgue measure). Let F (x) = d(x,A) be the Euclidean distance from
x ∈ Rn to A. F is 1-Lipschitz but not convex.

Now consider the set Bδ = {x :
∑n

i=1 xi−n/2 ≥ δ
√
n} ⊂ {0, 1}n. The we have Bδ ⊂ {x : d(x,A) ≥√

δn1/4}. Indeed, for any x ∈ Bδ and any y ∈ A,

δ
√
n ≤

n∑
i=1

xi − n/2 ≤
n∑
i=1

(xi − yi) ≤
n∑
i=1

|xi − yi|2.

Hence by monotonicity of the uniform product measure P and the central limit theorem,

P ({F (x) ≥
√
δn1/4}) ≥ P ({

∑n
i=1 xi − n/2√

n
≥ δ}) ≥ 1/10

for δ sufficiently small independent of n. Here again, F concentrates at scale � n1/4.

5 Applications

5.1 List of applications

Applications of Corollary 1.2 in random matrix theory (see [Ta2012]):

• Can be used to control the distance of a random vector to a hyperplane. This is related to
studying the probability of singularity of (say) a 0− 1 matrix, since singularity occurs when
one of the rows is in the span of the other rows.

• Concentration of Schatten norms ||M ||Sk = (tr(Mk))1/k, which can be used to reduce the
problem of finding almost sure limits of moments of the (random) empirical spectral distri-
bution to finding the limits of their expectations.

• Concentration for convex functions on the spectrum.

Applications of Theorem 1.1 in combinatorial optimization (see [Ta1995]):

• Concentration for the length of the longest increasing subsequence of a random permutation
(or equivalently, of the coordinates of point selected uniformly at random from [0, 1]n).

• Stochastic bin packing (Talagrand’s first use of his inequality): draw n numbers uniformly
at random from [0, 1], and consider the smallest number of bins of size 1 needed to store n
objects with sizes given by the n numbers. Whatever it is, for large n it concentrates sharply
around its median!

• Traveling salesman problem and minimal spanning tree. See also [St1996].

• First time passage percolation.

8
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5.2 An equivalent definition of convex distance

There is an equivalent definition of the convex distance dC(x,A) that is used for applications (the
above definition is only used for the proof!). Recall that the Hamming distance between points x
and y in a product space Ω1 × · · · × Ωn is given by

dH(x, y) := #{i : xi 6= yi, 1 ≤ i ≤ n} =

n∑
i=1

1{xi 6=yi}.

For any α ∈ Rn+, consider the weighted Hamming metric

dα(x, y) :=

n∑
i=1

αi1{xi 6=yi}

and let

D(x,A) = sup
|α|=1

dα(x,A), (10)

where dα(x,A) = infy∈A dα(x, y) and | · | denotes Euclidean norm.

Proposition 5.1 D(x,A) = dC(x,A).

Proof We first show D(x,A) ≤ dC(x,A). Let α ∈ Rn+, |α| = 1. Then by first applying the
definition of UA(x), then using the fact that the minimum of linear functional on a convex set is
equal to the minimum over the set of extreme points, and finally applying the Cauchy-Schwarz
inequality, we have

dα(x,A) = inf
y∈A

n∑
i=1

αi1{xi 6=yi}

= inf
s∈UA(x)

α · s

= inf
v∈VA(x)

α · v

≤ inf
v∈VA(x)

|v| = dC(x,A).

Taking the supremum over α, we have the desired inequality.

For the sake of completeness we prove the reverse inequality, though the above is sufficient for our
purposes. Let z ∈ VA(x) such that |z| = dC(x,A). If |z| = 0 we are done. Otherwise, let α = z/|z|
and let v be another point in VA(x). Then by convexity, λv+ (1−λ)z ∈ VA(x) for any λ ∈ [0, 1], so

|z|2 ≤ |z + λ(y − z)|2 = |z|2 + 2λz · (v − z) + λ2|v − z|2.
Hence 0 ≤ 2z · (v − z) + λ|v − z|2, and setting λ = 0 implies that z · (v − z) ≥ 0. It follows that
α · v ≥ |z| = dC(x,A) for all v ∈ VA(x). Then we have

D(x,A) ≥ dα(x,A) = inf
v∈VA(x)

α · v ≥ dC(x,A).

and we are done. �
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The power of this formulation of convex distance is the freedom we have with the weights αi.
Indeed, note that in the convex distance definition (10), the supremum over α is taken at each
point x ∈ Ω. Hence, α can be allowed to vary with x. We now see how the game of applying
Talagrand’s inequality reduces to the problem of finding an appropriate weight function α(x).
Indeed, it follows from the above proposition and Theorem 1.1 that

P (dα(x)(x,A) ≥ t) ≤ 1

P (A)
e−t

2/4

for any weight function α.

While the full convex distance is not so easy to apply directly as, say, Euclidean distance (a reason
for the appeal of Corollary 1.2), we will in applications that a weight function often suggests itself.

For subsets A,B of a product space Ω, if we suppose that B ⊂ Act = {x : dc(x,A) ≥ t}, then
Theorem 1.1 and monotonicity imply P (A)P (B) ≤ e−t

2/4. The following phrases the hypothesis
B ⊂ Act in terms of the Hamming definition (10) of the convex hull distance.

Corollary 5.2 Let Ω1, . . . ,Ωn be probability spaces and let Ω be the product space with product
probability measure P . Let A and B be measurable subsets of Ω. Suppose that for every x =
(x1, . . . , xn) ∈ B there is α = α(x) ∈ Rn+ such that for all y = (y1, . . . , yn) ∈ A,

n∑
i=1

αi1{xi 6=yi} ≥ t

(
n∑
1

α2
i

)1/2

(11)

for some t > 0. Then

P (A)P (B) ≤ e−t2/4. (12)

As before A and B will typically come to us as sets of the form {X ≤ a}, {X ≥ b} for some
random variable X, and concentration around a median MX would again be demonstrated by
alternately taking a and b as the median or shifts of the median by t. We demonstrate the use of
this formulation with examples.

5.3 The top eigenvalue, take 2

In this section we present an application the above formulation of Talagrand’s inequality for the
top eigenvalue of a random matrix, as originally given in [KrVu2000], as an instructive (though
lengthier) alternative path to the result obtained from Corollary 1.2. This is a warmup to a proof
along the same lines of concentration for other eigenvalues, as given in [AlKrVu2002], which cannot
follow directly from Corollary 1.2.

For 1 ≤ i ≤ j ≤ n let xij be independent (real) random variables, |xij | ≤ 1. Let for each
1 ≤ j < i ≤ n set xji = xij and let X be the symmetric n × n matrix with entries xij . Let
λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues of X.

Theorem 5.3 (Krivelevich, Vu ’00) P (|λ1(X)−Mλ1(X)| ≥ t) ≤ 4e−t
2/32.

10
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(This theorem was proved as part of a paper on algorithms for approximating statistics of random
graphs.)

Proof First the product space with product measure: let m = n(n+ 1)/2, Ωm = [−1, 1]m, and P
be the joint distribution of the entries on Ωm.

Let M ∈ R, t > 0. Let A = {X : λ1(X) ≤ M} and B = {Y : λ1(Y ) ≥ M + t}. We’ll occationally
abuse notation by writing matrices as vectors with m entries and sometimes as doubly-indexed
matrices or triangular arrays.

If we can get an inequality like (12) for this choice of A,B, we’ll be able to deduce concentration
around a median in the usual way. So our job now is to find, for each Y ∈ B, a vector of weights
α ∈ Rm+ (alternatively written α = (αij)1≤i≤j≤n), such that for all X ∈ A, we have

n∑
1≤i≤j≤n

αij1{xij 6=yij} ≥ ct

 ∑
1≤i≤j≤n

α2
ij

1/2

(13)

For some constant c > 0 (from the statement of the theorem one sees that we have c = 1/2
√

2.)

So how can we get α(Y ) that will accomplish (13)? We’ll get it from the eigenvector of Y associated
to its largest eigenvalue.

The Answer: For Y ∈ B, let v be the unit eigenvector of Y associated to the eigenvalue λ1(Y ).
For 1 ≤ i ≤ n, let αii = v2

i , and for 1 ≤ i < j ≤ n, let αij = 2|vi||vj |.

Let’s proceed as if we didn’t know this. For given X and Y , we want to translate the inequalities
λ1(X) ≤M , λ1(Y ) ≥M+t into an inequality like (13) involving the entries of the matrices. We can
use v to do this: we have vtY v = λ1(Y ) ≥M+t and vtXv ≤ λ1(X) ≤M . Now we follow our noses:

t ≤ vt(Y −X)v =
∑

1≤i,j≤n
vi(yij − xij)vj

≤ 2
∑

1≤i,j≤n
|vi||vj |1{xij 6=yij}

= 2
∑

1≤i≤j≤n
αij1{xij 6=yij}

where αij is as defined in The Answer.

It only remains to get a bound on the Euclidean norm of α.

11
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∑
1≤i≤j≤n

α2
ij =

n∑
i=1

v4
i + 4

∑
1≤i<j≤n

|vi|2|vj |2 (14)

≤ 2

(
n∑
i=1

v2
i

)2

= 2. (15)

So for our choice of α we have

n∑
1≤i≤j≤n

αij1{xij 6=yij} ≥ t/2 ≥
t

2
√

2

 ∑
1≤i≤j≤n

α2
ij

1/2

.

The result follows from Theorem 5.2 and substituting M = Mλ1(X) and M = Mλ1(X)− t.

Note that we can get the same concentration result for the bottom eigenvalue λn by taking A =
{X : λn(X) ≥M + t}, B = {Y : λn(Y ) ≤M} (but still using the eigenvector of Y !).

Remark Notice the slight inefficiency in passing from (14) to (15): we could let the diagonal
entries vary on a set of diameter 2

√
2 instead of 2 and get the same estimate. This is an artifact of

double counting the off diagonal entries while only counting the diagonal ones once.

5.4 Other eigenvalues

The above approach can actually be extended to obtain concentration for other eigenvalues, which
are non-convex statistics and hence do not admit immediate application of Corollary 1.2. (We
note however that with some additional effort a strengthening of the following result was actually
obtained by Meckes using Corollary 1.2.)

Theorem 5.4 (Alon, Krivelevich, Vu ’02) (Same setup as before.) For each 1 ≤ s ≤ n,

P (|λs(X)−Mλs(X)| ≥ t) ≤ 4e−t
2/32s2 . (16)

Proof With the same setup as before, we now fix 1 ≤ s ≤ n, let M ∈ R, t > 0, and let
A = {X : λs(X) ≤M}, B = {Y : λs(Y ) ≥M + t}.

Now what are the proper weights α? Here we construct them from the s unit eigenvectors of Y
associated to its s largest eigenvalues.

For fixed Y , let v1, . . . vs be those eigenvectors of Y , and for 1 ≤ p ≤ s we write vp = (vp1 , . . . , v
p
n).

The Answer: For 1 ≤ i ≤ n, let αii =
∑s

p=1(vpi )
2, and for 1 ≤ i < j ≤ n, let αij =

2
√∑s

p=1(vpi )
2
√∑s

p=1(vpj )
2. Then ∑

1≤i≤j≤n
α2
ij ≤ 2s2 (17)

12
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and ∀X ∈ A, ∑
1≤i≤j≤n

αij1{xij 6=yij} ≥ t/2 (18)

.

As before we first show (18).

The key intuition comes from the Courant-Fischer minimax characterization of eigenvalues: we can
find a unit vector u in the span of the first s eigenvectors of Y that is orthogonal to the span of
the largest s− 1 eigenvectors of X. This is how we narrow in on λs.

Let u be such a vector and write u =
∑s

p=1 cpv
p. We have utXu ≤ λs(X) ≤ M and utY u ≥

λs(Y ) ≥M + t. Hence,

t ≤ ut(Y −X)u =
∑

1≤i,j≤n
ui(yij − xij)uj

=
∑

1≤i,j≤n
(yij − xij)(

s∑
p=1

cpv
p
i )(

s∑
q=1

cqv
q
j )

≤ 2
∑

1≤i,j≤n
|
s∑

p=1

cpv
p
i ||

s∑
q=1

cqv
q
j |1{yij 6=xij}

≤ 2
∑

1≤i,j≤n
(
s∑

p=1

c2
p)

1/2(
s∑

p=1

(vpi )
2)1/2(

s∑
p=1

c2
p)

1/2(
s∑

p=1

(vpi )
2)1/2

= 2
∑

1≤i,j≤n
(
s∑

p=1

(vpi )
2)1/2(

s∑
p=1

(vpi )
2)1/2.

Letting α as in the answer we have (18).

Now for (17):

∑
1≤i≤j≤n

α2
ij =

n∑
i=1

(
s∑

p=1

(vpi )
2)2 + 4

∑
1≤i<j≤n

(
s∑

p=1

(vpi )
2)(

s∑
p=1

(vpj )
2)

≤ 2(

n∑
i=1

s∑
p=1

(vpi )
2)2 = 2(

s∑
p=1

n∑
i=1

(vpi )
2)2 = 2s2.

The same estimate for λn−s+1(X) follows as before by letting B = {Y : λn−s+1(Y ) ≤ M}, A =
{X : λn−s+1(X) ≥ M + t} and finding a u in the span of the eigenvectors of Y associated to its
smallest s eigenvectors, and orthogonal to the corresponding s− 1 eigenvectors of X. �

Remark Our concentration gets worse as we head deeper into the “bulk” of the spectrum. How-
ever, we have reason to believe concentration in the bulk should be the same, as this can be verified

13
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for Gaussian entries using Gaussian concentration estimates for Lipschitz functions (which do not
require the hypothesis of convexity). This holds more generally for any measure that obeys a
log-Sobolev inequality (of which the Gaussian is the model example). Our functional logarithmic
Sobolev inequality in section 3 was obtained with the added assumption that the function is convex,
and no hypotheses on the measure apart from boundedness.

5.5 The longest increasing subsequence

Let X = (x1, . . . , xn) be uniformly distributed in Ω = [0, 1]n, let J(x) be the longest increasing
subsequence of {x1, . . . , xn), and let Fn(x) = |J(x)| be its length. We will use Theorem 5.2 to show
that Fn concentrates tightly around its median MFn.

Note that we cannot apply Corollary 1.2 as Fn is not convex. For instance, with n = 3, taking
x = (0, 1, .6) and y = (.8, 0, .6) we have that F3(x) = 2 = F3(y), but F3(x+y

2 ) = F3((.4, .5, .6)) = 3.
However, Fn is 1-Lipschitz with respect to the Hamming metric, which is essentially what makes
it ammenable to analysis with the deeper Theorem 1.1.

We let a > 0 and A = {F (y) ≤ a}. Our construction of the weights α begins with a simple
observation: for any x, y ∈ Ω,

Fn(y) ≥ Fn(x)−
n∑
i=1

1{xi∈J(x),xi 6=yi}. (19)

Indeed, if J(x) is the longest increasing subsequence of x, then by taking those elements of J(x)
shared by y we have an increasing subsequence of y, the length of which is bounded by Fn(y). From
this we have

Fn(x)− Fn(y) ≤
n∑
i=1

1{xi∈J(x)}1{xi 6=yi}

which is starting to look like (11). If we let

α(x) =
1√
Fn(x)

1J(x) (20)

we have

dα(x)(x, y) =
1√
Fn(x)

n∑
i=1

1{xi∈J(x)}1{xi 6=yi}

≥ 1√
Fn(x)

(Fn(x)− Fn(y)).

For the convex distance from x to A we have

dC(x,A) ≥ Fn(x)− a√
Fn(x)

.

14
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For t ≥ a the function g(t) = (t − a)/
√
t is monotone increasing. From this and Theorem 1.1 it

follows that

P (Fn(x) ≥ a+ t) ≤ P (
Fn(x)− a√

Fn(x)
≥ t

a+ t
)

≤ P (dC(x,A) ≥ t

a+ t
)

≤ 1

P (A)
e−t

2/4(a+t).

Taking a = Mn := MFn(x) we get the upper tail estimate

P (Fn(x) ≥Mn + t) ≤ 2 exp(− t2

4(Mn + t)
)

and taking a = Mn − t we get the lower tail estimate

P (Fn(x) ≤Mn − t) ≤ 2 exp(− t2

4Mn
).

Hence, for large n Fn(x) is roughly Mn +O(
√
Mn). It can be shown by elementary means (see e.g.

[St1996]) that Mn = O(
√
n), so the above concentration estimates are enough to prove a strong

law of the form (Fn(x)−Mn)/
√
n→ 0 a.s..

Remark Much more is known about the asymptotics of Fn. For instance, it has been shown by
a variety of methods that Fn/

√
n → 2 almost surely. Furthermore, in [BaDeJo1999] it was shown

that n−1/6(Fn − 2
√
n) converges in distribution to the Tracy-Widom law, putting it in the same

universality class as our first example, the top eigenvalue of a random Hermitian matrix. For an
entertaining survey of these results and their relation to patience sorting of cards, see [AlDi1999].
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