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1 Introduction

Endre Szemerédi is famous for his work in combinatorics and theoretical computer
science. He has published a very large number of papers, often involving extraordi-
narily intricate arguments, so it will not be possible in an article such as this to do
justice to either the breadth or the depth of his work. Instead, therefore, I shall de-
scribe a representative sample of his best known theorems, and attempt to convey in
an informal way some of the ideas that go into their proofs. The sample will consist
of the following results. (The dates given below and throughout the paper are the
dates of publication rather than the dates that the results were actually proved.)

• In 1975, he proved that every dense subset of the natural numbers contains arbi-
trarily long arithmetic progressions, solving a famous and decades-old problem
of Erdős and Turán.

• As part of the proof of the Erdős-Turán conjecture he formulated and proved a
lemma, now known as Szemerédi’s regularity lemma, that became a central tool
in extremal graph theory and an inspiration for many other results in graph theory
and beyond.

• In 1978, with Imre Ruzsa, he proved, using the regularity lemma, that every
graph with few triangles can be approximated by a graph with no triangles. This
innocent-looking result has been at the heart of many developments in graph the-
ory, hypergraph theory, additive combinatorics, and computer science.

• In 1980, with Miklós Ajtai and János Komlós, he showed that the Ramsey number
R(3, k) is at most Ck2/ logk.
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• In 1982, with János Komlós and János Pintz, he found a counterexample to an
old conjecture of Heilbronn in combinatorial geometry.

• In 1983, with Miklós Ajtai and János Komlós, he constructed a parallel sorting
network that sorts n objects in O(logn) rounds.

• Also in 1983, with William Trotter, he proved a theorem about point-line inci-
dences that has become one of the central results in combinatorial geometry.

• In 1995, with Jeff Kahn and János Komlós, he obtained the first exponentially
small upper bound for the probability that a random ±1 matrix is singular.

2 Szemerédi’s Theorem

As its name suggests, Szemerédi’s most famous theorem is . . . Szemerédi’s theorem
[26], which states the following.

Theorem 1 For every positive integer k and every δ > 0 there exists N such that
every subset A ⊂ {1, . . . ,N} of size at least δN contains an arithmetic progression
of length k.

This result was first conjectured in 1936, by Erdős and Turán [12], so by the time
Szemerédi proved it in 1975 it had been open for almost four decades. Since then,
a number of other proofs have been discovered, but they have been discussed in
several other places, and here it seems more appropriate to talk about Szemerédi’s
own proof. Unfortunately, his proof is long and extremely intricate, so it is out of
the question to present it here, and difficult even to give an overview. However, it is
significantly easier in the case k = 3, so I shall begin by describing the argument in
that case.

2.0.1 Density Increment Strategies Common to many proofs of Szemerédi’s
theorem, and indeed of several other results in extremal combinatorics, is the so-
called density increment strategy. If X is a combinatorial structure and A is a subset
of X, then the density of A is |A|/|X|. Suppose now that X has many substructures
that are very similar to X itself and we want to prove that if the density of A is at least
δ then A has some property P . Suppose also that if any subset of A has property P
then A itself has that property. (In particular, this is true when the property is of the
form “contains a configuration of type T ”.) Then instead of aiming directly for the
property P we can instead try to prove one of the following two statements.

1. A has property P .
2. There exists a substructure Y such that the density of A ∩ Y in Y is at least

δ + c(δ).

Here c(δ) is a positive constant that depends on δ and increases as δ increases.
(One could get away with a weaker condition, but in practice this one always holds.)
If the substructure Y is sufficiently similar to X, then it too will have plenty of
substructures, so in the second case we can apply the argument again. The density
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cannot continue increasing for ever, so eventually, as long as the initial structure X

is large enough, we obtain a subset of A with property P , which shows that A has
property P .

Another way of looking at the density increment strategy is that its existence
allows us to add an extra assumption about the set A: that it has density δ in X,
and density at most δ + c(δ) in every substructure Y of X. (The proof: if not, then
we can pass to Y and we have a bigger density to work with; this cannot go on for
ever.) This is extremely useful, because it allows us to assume that A has the kind
of homogeneity that is usually associated with random sets, and random sets behave
very nicely. This very rough idea is at the heart of all proofs of Szemerédi’s theorem,
but turning it into a rigorous proof is not at all easy.

2.1 Sketch Proof of Szemerédi’s Theorem when k = 3

Our aim in this subsection is to present Szemerédi’s proof of the following result,
which is the first non-trivial case of Theorem 1.

Theorem 2 For every δ > 0 there exists N such that every subset A ⊂ {1, . . . ,N}
of cardinality at least δN contains an arithmetic progression of length 3.

This result was first proved by Klaus Roth [20] in 1953. Roth used Fourier anal-
ysis, while Szemerédi’s argument is, as we shall see, purely combinatorial.

We shall apply the density increment strategy. In the context of this problem,
there is a very natural collection of substructures of {1,2, . . . ,N}, namely the set
of all arithmetic progressions that are subsets of {1,2, . . . ,N}. So by the discussion
above, we are free to assume that A has density δ in {1,2, . . . ,N} and density at
most δ + c(δ) in every arithmetic progression Y ⊂ {1, . . . ,N} of length at least m.
What matters here is that m should tend to infinity with N , since then we can ensure
that m is as large as we like by choosing N sufficiently large. We shall choose c(δ)

and m later in the argument.
Let us now introduce a second idea that appears in many arguments that use a

density increment strategy. Suppose you want to show that A intersects a substruc-
ture Y with density at least δ + c(δ). Often it is not obvious how to find such a
substructure in one step, but it is much clearer how to show that A intersects some
kind of “nice” set W with density at least δ + 2c(δ) (say). In principle, that allows
one to obtain a density increment in two stages. In the first stage, one obtains the
“nice” set W such that |A ∩ W | ≥ (δ + 2c(δ))|W |. In the second stage, one shows
that W can be partitioned into large substructures Y1, . . . , Yr . By averaging, one then
deduces that there exists i such that |A∩Yi | ≥ (δ + 2c(δ))|Yi | and one has a density
increment.

Sometimes, asking for a partition is too much, but one can get away with a
slightly weaker assertion. This is where the factor 2 comes in. It is enough if al-
most all of W can be partitioned into large substructures Y1, . . . , Yr : if |W \ (Y1 ∪
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· · · ∪ Yr)| ≤ c(δ)|W |, then |A ∩ (Y1 ∪ · · · ∪ Yr)| ≥ (δ + c(δ))|Y1 ∪ · · · ∪ Yr | and the
averaging argument works again.

Another way of weakening the requirement that the substructures Yi partition W

is to ask instead that they form a uniform covering of W : that is, every element of W

is contained in the same number of sets Yi . It is easy to see that the averaging argu-
ment still works. And one can weaken that to an approximately uniform covering.
However, approximate partitions will suffice here.

2.1.1 A Strategy for Obtaining a “Nice” Set

To see where a “nice” set W might come from in our case, we shall make a simple
observation, but we need to set the scene first.

Let θ be a smallish positive absolute constant, and let us divide the interval
{1, . . . ,N} into three parts: the integers up to (1/2 − θ)N , the integers between
(1/2 − θ)N and (1/2 + θ)N and the integers between (1/2 + θ)N and N . That
is, we split {1, . . . ,N} up into a smallish interval around N/2 and the intervals on
either side of it. Let us refer to these intervals as the left interval, the middle interval
and the right interval, and write them as L, M and R. Let us also write AL, AM and
AR for A ∩ L, A ∩ M and A ∩ R.

The density-increment strategy allows us to assume that the density of A in each
of L, M and R is at most δ + c(δ), which implies, by an easy averaging argument,
that it is approximately equal to δ in each of the three subintervals.

Now if we are given any subset B of AM , then A has an empty intersection with
2.B − AL (which is defined to be {2y − x : x ∈ AL,y ∈ B}). That is because the
numbers x and y belong to A and the triple (x, y,2y − x) is an arithmetic progres-
sion. (We are of course assuming that A does not contain an arithmetic progression
of length 3.) Thus, AR is disjoint from 2.B − AL.

The set 2.B − AL is not just any old set: it is a sumset of two large and very
homogeneous sets, and as such has a highly atypical structure. Could that structure
allow us to partition its complement into long arithmetic progressions?

The answer is not immediately obvious, so let us try a simple-minded approach,
picking a positive integer d and partitioning the complement of 2.B − AL into
maximal arithmetic progressions of common difference d . It turns out to be easy
to characterize how many of these progressions there are, since if x is the mini-
mal element of such an arithmetic progression, we know that x /∈ 2.B − AL and
x − d ∈ 2.B − AL. That is, x ∈ (2.B − AL + d) \ (2.B − AL).

This gives us a proof strategy. Suppose we can find a subset B ⊂ AM and a
positive integer d such that (2.B −AL +d)\ (2.B −AL) has cardinality o(N). Then
we can partition the complement of 2.B − AL into o(N) arithmetic progressions
with common difference d . Since this complement contains AR , which has density
at least δ/4, the average length of these progressions tends to infinity. By an easy
averaging argument, we can throw away o(N) points and partition the rest of the
complement of 2.B − AL into long arithmetic progressions. Since 2.B − AL has
density at least δ/4 (because AL does, and 2.B is non-empty) and AR has density
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roughly δ in R, the average density of A inside these arithmetic progressions is at
least (1 + cδ)δ = δ + cδ2 for some absolute constant c, and we have our density
increment on a long arithmetic progression.

2.1.2 Implementing the Strategy

It remains to find a set B and a positive integer d such that (2.B − AL + d) \
(2.B − AL) has cardinality o(N). For this we use the simple observation that if
B ⊂ B ′ then 2.B − AL ⊂ 2.B ′ − AL. This again leads to a proof strategy. Suppose
we can find a sequence of subsets B0,B1, . . . ,Bk of AM such that each Bi is of
the form Bi−1 ∪ (Bi−1 + di) for some positive integer di . Then the Bi are nested,
so the sets 2.Bi − AL are nested, from which it follows that there exists i such
that (2.Bi − AL) \ (2.Bi−1 − AL) has cardinality at most N/k. But 2.Bi − AL =
(2.Bi−1 − AL + 2di) ∪ (2.Bi−1 − AL), so

(2.Bi − AL) \ (2.Bi−1 − AL) = (2.Bi−1 − AL + 2di) \ (2.Bi−1 − AL),

which is a set of the form that we would like to have cardinality o(N). Therefore,
our proof will be complete if we can get k to tend to infinity.

We have now reduced the problem to the task of finding a large Hilbert cube
inside AM : that is, a set of the form {x + ∑k

j=1 εj dj : εj ∈ {0,1}}. If we can find

that, then we can set Bi = {x + ∑i
j=1 εj dj : εj ∈ {0,1}} and we will have Bi =

Bi−1 ∪ (Bi−1 + di) as desired.

Claim Let I be an interval of integers of cardinality m and let E be a subset of I

of density η. Then E contains a Hilbert cube of dimension at least c log logm.

The proof is well known and very simple. There are ηm(ηm − 1) ≈ η2m2 pairs
(x, y) of distinct elements of E and at most 2m possible differences, so at least
one difference d1 occurs at least η2m/2 times (up to a tiny error). Let E1 = E ∩
(E − d1). Then E1 has cardinality at least η2m/2 and E1 ∪ (E1 + d1) ⊂ E. We
repeat this observation for E1 to find a subset E2 and a positive integer d2 such that
E2 ∪ (E2 +d2) ⊂ E1, and so on. At each stage of the iteration, we square the density
of the set, and the iteration continues for as long as we still have a density of at least
m−1. From this we obtain a cube of dimension k provided that (1/η)2k ≤ m, which
gives us the bound of c log logm.

With the claim established, the proof of the theorem is complete.

2.2 What Happens when the Progressions Are Longer?

The proof just sketched contains the germs of various ideas that appear in the proof
of the general case of Szemerédi’s theorem. However, the argument for longer pro-
gressions is much more difficult and complicated. There is a simple reason for this,
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which can be summarized in the form of a slogan: it is very easy to find arithmetic
progressions of length 2. In the argument above, we made use of the fact that if a set
A contains no arithmetic progressions of length 3, and if B and C are subsets of A,
then A is disjoint from the set 2C − B . That is, every pair (b, c) ∈ B × C gives us a
number 2c − b that is not allowed to belong to A (as long as b ≠ c).

If we want to try to do something similar for progressions of length 4, then
we will find ourselves considering three sets, B , C and D. But now a triple
(b, c, d) ∈ B × C × D does not usually yield for us an element that cannot belong
to A: it does so only if b, c and d lie in an arithmetic progression (in which case the
next term in that progression is not allowed to belong to A). As just one example of
the kind of difficulty this can cause, suppose we tried to imitate the proof for pro-
gressions of length 3 as follows: split the interval {1, . . . ,N} into four subintervals,
let A1, . . . ,A4 be the intersections of A with those intervals, find structured subsets
S2 and S3 of A2 and A3 (to play the role of the Hilbert cube), and then use points
in A1 together with the sets S2 and S3 to find many points that cannot belong to
A4. Whereas in the argument for progressions of length 3, every point in AL ruled
out many points from AR , now a point in A1 would not rule out any points at all
from A4 unless it belonged to the set 2.S2 − S3. If S2 and S3 are very small sets
(as the Hilbert cube was in the argument for progressions of length 3), then there
is no reason to suppose even that the set A1 ∩ (2.S2 − S3) is non-empty. So for an
approach like this to have any chance of working, the construction of the sets S2 and
S3 would have to depend in an essential way on the sets A1 and A4—by contrast
with the construction of the Hilbert cube in the earlier argument, which depended
on AM only.

We shall have a little more to say about the proof for longer progressions at the
end of the next section.

3 Szemerédi’s Regularity Lemma

In 1947, Erdős gave a remarkably simple proof [10] that the Ramsey number R(k, k)
is at least 2k/2. The proof can be summarized in a single sentence: if you take the
complete graph on 2k/2 vertices and randomly colour its edges with two colours,
then the expected number of monochromatic cliques of size k is less than 1. This
proof gave birth to the subject of random graphs, and to the realization that random
graphs are in many ways easy to understand. In particular, if G is a graph with n
vertices and each pair of vertices xy forms an edge with probability p, with all these
events being independent, then two things happen with high probability.

1. For every large set X of vertices the density of the induced subgraph with vertex
set X is approximately p.

2. If v is a fixed constant and H is a graph with v vertices and e edges, then the
number of copies of H in G is approximately pe(1 − p)(

v
2)−env .

To be clear, a copy of H means a function φ from the vertex set of H to the vertex
set of G such that φ(x)φ(y) is an edge of G if and only if xy is an edge of H .



The Mathematics of Endre Szemerédi 465

3.1 Quasirandom Graphs and the Counting Lemma

Approximately 40 years later it was realized, as a result of work of Thomason [31]
and Chung, Graham and Wilson [8], that the two properties above are equivalent.
This leads to the extremely useful notion of a quasirandom graph, which is a graph
with one, and hence both, of the above properties.

There are many further respects in which quasirandom graphs behave like ran-
dom graphs. A particularly important one is an example of a counting lemma, for
which we need the closely related notion of a quasirandom bipartite graph. A bipar-
tite graph G of density p with vertex sets X and Y of sizes m and n is quasirandom
if it has one of the following two properties, which again turn out to be equivalent.

1. For every large pair of subsets X′ ⊂ X and Y ′ ⊂ Y the density of the induced
bipartite subgraph with vertex sets X′ and Y ′ is approximately p.

2. If v and w are fixed constants and H is a bipartite graph with vertex sets of
sizes v and w vertices and e edges, then the number of copies of H in G with
the vertex set of size v in X and the vertex set of size w in Y is approximately
pe(1 − p)vw−emvnw .

The counting lemma is the following statement.

Lemma 1 Let G be a k-partite graph with vertex sets V1, . . . , Vk such that Vi has
cardinality ni for each i and such that for each i, j the bipartite graph that joins Vi

to Vj is quasirandom with density αij . Let H be a graph with vertex set {1,2, . . . , k}.
Then the number of copies φ : H → G of H in G such that φ(i) ∈ Vi for each i is
approximately n1 . . . nk

∏
ij∈E(H) αij

∏
ij /∈E(H)(1 − αij ).

The counting lemma has a very intuitive interpretation. Imagine that the edges
between Vi and Vj are put in with probability αij and that we randomly pick a
vertex vi from each Vi . Then the probability that the vertices v1, . . . , vk span a copy
of H , in the sense that vivj is an edge of G if and only if ij is an edge of H , will be∏

ij∈E(H) αij
∏

ij /∈E(H)(1 − αij ). The counting lemma tells us that the same is true
if the edges between each Vi and Vj form quasirandom bipartite graphs rather than
random ones. Thus, when those graphs are quasirandom, the number of copies of H

is “what one would expect”.

3.2 Statement of the Regularity Lemma

The counting lemma concerns graphs with vertex sets that can be partitioned into
a small number of sets in such a way that the edges between each pair form quasi-
random bipartite graphs. This may seem like a rather artificially strong condition
to impose on a graph. Remarkably, it is not strong at all: to oversimplify slightly,
Szemerédi’s regularity lemma tells us that every dense graph is of this apparently
special form.
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A more precise statement of the lemma is as follows. Given any two sets U,V

of vertices in a graph, let e(U,V ) denote the number of pairs (u, v) ∈ U × V such
that uv is an edge of G, and define the density d(U,V ) to be e(U,V )/|U ||V |. We
define a bipartite graph G with vertex sets X and Y and density p to be ε-regular if
|d(U,V ) − p| ≤ ε whenever U ⊂ X, V ⊂ Y , |U | ≥ ε|X| and |V | ≥ ε|Y |.

Theorem 3 For every ε > 0 there exists a positive integer K with the following
property. For every finite graph G there is a partition of its vertex set into subsets
V1, . . . , Vk with sizes differing by at most 1, such that k ≤ K and such that for all
but at most εk2 pairs (i, j) the bipartite subgraph of G induced by Vi and Vj is
ε-regular.

The slight oversimplification alluded to earlier was that I implied that all the
pairs were quasirandom, whereas the correct statement is that they are almost all
quasirandom. However, this does not matter too much: for example, the counting
lemma remains true if a few of the bipartite graphs are not quasirandom, since it is
an approximate statement.

3.3 Sketch Proof of the Regularity Lemma

The regularity lemma has been intensively studied ever since it was originally for-
mulated, and there are now several approaches to proving it. However, even Sze-
merédi’s original approach is simple and conceptual, so that is the one I shall present
here.

3.3.1 Energy Increment Strategies

The key idea is a cousin of the density increment strategy discussed earlier: it is what
is nowadays often referred to as an energy increment strategy. Let G be a graph with
vertex set V and let V1, . . . , Vr be a partition of the vertex set of G. Let |Vi | = µi |V |
for each i. Then the mean square density of the partition is

∑
i µiµjd(Vi,Vj )

2. This
we can think of as a kind of “energy”.

I have stated this definition without assuming that the Vi have approximately the
same size. We shall need a further definition adapted to this context. Let B be the
set of “bad” pairs: that is, pairs (i, j) such that the bipartite subgraph induced by Vi

and Vj is not ε-regular. Let us say that the partition is ε-regular if
∑{µiµj : (i, j) ∈

B} ≤ ε.
The energy increment strategy, like the density increment strategy, is a way of

proving results without trying to do everything in one go. Here we shall prove that
one of the following two statements is true.

• The partition V1 ∪ · · · ∪ Vr is ε-regular.
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• There is a refinement of the partition V1 ∪ · · · ∪ Vr into at most m = m(r) sets
W1, . . . ,Wm such that the mean square density of the refined partition is greater
than the mean square density of the original partition by at least c(ε).

If we can prove something like that, then we are clearly done: we cannot keep
increasing the mean square density for ever (as with the density increment strategy,
we are assuming that c(ε) is an increasing function of ε), so after a certain number
of refinements we end up with an ε-regular partition. The size of this partition will
be bounded above by a function obtained by iterating the function m some number
of times that depends on ε only.

3.3.2 Implementing an Energy Increment Strategy

To get the energy increment strategy to work here, we need two simple lemmas.

Lemma 2 Let G be a graph with vertex set V and let P = {V1, . . . , Vk} be a parti-
tion of V . For each i let Vi1, . . . , Viki be a partition of Vi and let Q be the partition
of V into the sets Vij . Then the mean square density of G with respect to Q is at
least as big as the mean square density of G with respect to P .

Proof This lemma can be proved by a direct calculation using the Cauchy-Schwarz
inequality. To see in a more conceptual way why it is true, let H be the Hilbert space
of real-valued functions defined on V ×V with the norm ∥f ∥ = (Ex,yf (x, y)2)1/2.
(Here, we write Ex,y as shorthand for |V |−2 ∑

x,y .) Let P : H → H be the aver-
aging projection with respect to the partition of V × V into the sets Vi × Vj . That
is, if (x, y) ∈ Vi × Vj , then Pf (x, y) = Eu∈Vi,v∈Vj f (u, v). Similarly, let Q be the
averaging projection that averages over the sets Vij × Vrs . Then P and Q are or-
thogonal projections, and PQ = P . Also, if f is the characteristic function of the
graph G, then ∥Pf ∥2 and ∥Qf ∥2 are the mean square densities of G with respect
to the partitions P and Q, respectively. But ∥Pf ∥2 = ∥PQf ∥2 ≤ ∥Qf ∥2, so the
lemma is proved. !

For the next lemma we need to adapt the notion of mean square density to bi-
partite graphs. If we have a bipartite graph G with vertex sets X and Y and we
have partitions X = X1 ∪ · · · ∪ Xr and Y = Y1 ∪ · · · ∪ Ys , we say that the mean
square density with respect to the two partitions is

∑
i,j µiνj d(Xi, Yj )

2, where
µi = |Xi |/|X| and νj = |Yj |/|Y |. For the next lemma it will be useful to interpret
the mean square density probabilistically. Let D be the random variable that takes a
random (x, y) ∈ X × Y to the density d(Xi,Xj ) for the unique pair (i, j) such that
x ∈ Xi and y ∈ Yj . Then the mean square density is simply ED2.

Lemma 3 Let G be a bipartite graph with vertex sets X and Y and density p.
Suppose that there are subsets X0 ⊂ X and Y0 ⊂ Y such that |X0| ≥ ε|X|, |Y0| ≥
ε|Y | and |d(X0, Y0) − p| ≥ ε. Let X1 = X \ X0 and Y1 = Y \ Y0. Then the mean
square density of G with respect to the partitions X = X0 ∪ X1 and Y = Y0 ∪ Y1 is
at least p2 + ε4.
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Proof Again this lemma can be proved by direct calculation. However, it is nicer to
use a probabilistic argument. As we have just commented, the mean square density
is ED2, where D is the random variable that tells you the density of G in the pair
Xi × Xj that your point lies in. Now ED = p, so ED2 = p2 + Var(D). Since the
probability that a random point (x, y) ∈ X × Y lies in X0 × Y0 is at least ε2, the
hypotheses of the lemma imply that the variance of D is at least ε2.ε2 = ε4, which
proves the lemma. !

We shall now be a little more sketchy. Recall that we are supposing that we have
a partition V = V1 ∪ · · · ∪ Vr that is not ε-regular, and we would like to find a
refinement that has a slightly larger mean square density. Again, let µi = |Vi |/|V |
and let B be the set of all pairs (i, j) such that the pair (Vi,Vj ) is not ε-regular. Let
us write G(Vi,Vj ) for the bipartite graph we obtain if we restrict G to Vi × Vj .

By Lemma 3, for each pair (i, j) ∈ B , we can find partitions Vi = V 0
ij ∪ V 1

ij and
Vj = V 0

ji ∪V 1
ji such that the mean square density of G(Vi,Vj ) with respect to these

two partitions is at least d(Vi,Vj )
2 + ε4.

For each i, we now pick a common refinement of all the partitions Vi = V 0
ji ∪

V 1
ji . We can do this with si ≤ 2r sets Vi1, . . . , Visi . Then by Lemma 2, for each

(i, j) ∈ B , the mean square density of G(Vi,Vj ) with respect to the partitions Vi =
Vi1 ∪ · · · ∪ Visi and Vj = Vj1 ∪ · · · ∪ Vjsj is at least d(Vi,Vj )

2 + ε4. For all other
pairs (i, j), Lemma 2 implies that the mean square density is at least d(Vi,Vj )

2.
Since a random pair (x, y) ∈ V 2 has a probability at least ε of belonging to Vi × Vj

for some (i, j) ∈ B , this implies that the mean square density of G with respect to
the partition into the sets Vij exceeds the mean square desnity of G with respect to
V1, . . . , Vr by at least ε5.

This completes the energy increment strategy and shows that we can find an ε-
regular partition into at most K = K(ε) sets, where K is the function obtained by
starting with 1 and iterating the function r .→ r.2r ε−5 times. In other words, K has
a tower-type dependence on ε.

When we stated the regularity lemma earlier we included an extra condition that
said that the sets Vi in the partition had roughly equal size. For most applications
this is not necessary, but it can be quite convenient. To obtain it, one runs the above
argument but at each iteration one approximates the partition one has obtained by
one in which the sets all have roughly equal size. We omit the details.

3.4 The Regularity Lemma and Szemerédi’s Theorem

For an excellent account of why the regularity lemma was useful to Szemerédi for
proving his theorem on arithmetic progressions, I recommend a blog post on the
topic by Terence Tao [28]. Here I shall attempt to convey the idea very briefly—the
arguments are explained in more detail in the blog post.

Let A be a subset of {1,2, . . . ,N}. Recall from the discussion of Szemerédi’s
theorem that the density increment strategy allows us to assume that |A∩P | ≤ (δ +



The Mathematics of Endre Szemerédi 469

c(δ))|P | whenever P is an arithmetic progression of length m, provided only that m

tends to infinity with N . Therefore, by averaging it follows that |A ∩ P | ≈ δ|P | for
almost all such progressions P . The same is true of more general sets that are made
out of arithmetic progressions, such as sets of the form P1 +· · ·+Pk where each Pi

is an arithmetic progression. (A set of this kind is called a k-dimensional arithmetic
progression.) Let us refer loosely to sets for which this kind of conclusion follows
as “structured sets”.

If we now take a structured set P and look at a set of translates P,P + r,

P + 2r, . . . ,P + (M − 1)r , we can define a sequence of subsets A0,A1, . . . ,AM−1
of P by setting Ai = A ∩ (P + ir) − ir = {x ∈ P : x + ir ∈ A}. Not only do we
expect almost all the Ai to have density roughly δ, but there are also interesting re-
lationships between the Ai . To give a simple example, no element x ∈ P can belong
to more than (δ + c(δ))M of the sets Ai , since otherwise more than (δ + c(δ))M of
the elements of the arithmetic progression x, x + r, . . . , x + (M − 1)r would belong
to A. It follows by averaging that if E is any subset of P , then there exists i such
that |Ai ∩ E| ≤ (δ + c(δ))|E|.

With the help of van der Waerden’s theorem, one can improve this result to one
about several sets E1, . . . ,Em. Suppose that we cannot find i such that |Ai ∩ Ej | ≤
(δ+c(δ))|Ej | for every j . Then we can m-colour the set {0,1, . . . ,M −1} by taking
the colour of i to be some j such that |Ai ∩ Ej | > (δ + c(δ))|Ej |. But then van der
Waerden’s theorem gives us a long arithmetic progression of numbers i for which
we can take the same j , and that, by a small modification of the remarks in the
previous paragraph, cannot happen.

If we apply this result not just to the Ej but also to their complements, then we
may conclude further that |Ai ∩ Ej | ≈ δ|Ej | for every j . (By “≈” here, we mean
that the difference between the two sides is at most a small multiple of |P |, so if Ej

is a very small set, then it tells us nothing.)
Unfortunately, m is so small compared with M that this observation is not very

helpful on its own. It is here that the regularity lemma comes in. Let E1, . . . ,EN

be a collection of subsets of P , where N may be arbitrarily large. We shall use the
regularity lemma to find i such that |Ai ∩ Ej | ≈ δ|Ej | for almost every j . Thus,
we have made a small loss—having to change from “every” to “almost every”—but
have also made a big gain—going from m sets, where m is much less than M , to N

sets, where N can be as large as we like.
Whenever one has a collection of subsets of a finite set, one can think of it as a

bipartite graph in which the subsets are neighbourhoods. Here we take the vertex
sets as P and {1, . . . ,N}, joining x ∈ P to j if and only if x ∈ Ej . (Thus, Ej ⊂ P is
the neighbourhood of j .) Let us apply the regularity lemma to this graph, obtaining
partitions of P and {1, . . . ,N} into a bounded number of sets. Let the partition
of P be P1 ∪ · · · ∪ Pm. Then we can apply the earlier result to obtain i such that
|Ai ∩ Ps | ≈ δ|Ps | for every s.

Now if (U,V ) is a regular pair of density α and A ⊂ U , then the regularity
condition implies that for almost every v ∈ V the neighbourhood of v in U intersects
A in a set of size approximately α|A|. Since almost all pairs are regular after we have
applied the regularity lemma, for most Ps we can conclude that |Ai ∩ Ps ∩ Ej | ≈
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δ|Ej ∩Ps | for almost every j . Summing over all s, it follows that |Ai ∩Ej | ≈ δ|Ej |
for almost every j , as claimed.

Of course, it is far from obvious how these ideas lead to a proof of Szemerédi’s
theorem, but that is beyond the scope of this article. At least the above argument
makes it plausible that the regularity lemma could be of use.

4 The Triangle Removal Lemma

In this section we present a beautiful result of Ruzsa and Szemerédi [22], which
amongst other things gives us an alternative proof of Theorem 2 and makes full use
of the regularity lemma.

Theorem 4 For every ε > 0 there exists δ > 0 such that if G is any graph with n

vertices and at most δn3 triangles, then one can remove a set of at most εn2 edges
from G and obtain a graph that is triangle free.

In short: every graph with few triangles can be approximated by a graph with no
triangles.

One might have thought that this result would either be false, or be true with a
more or less trivial proof. However, it is neither: it is true with a non-trivial proof,
and to determine even very roughly the correct dependence of δ on ε is still an
important open problem. (The best known bound, due to Jacob Fox, is that δ can be
taken to be 1/T (log(1/ε)), where T is a tower-type function. In the other direction,
it is known that δ cannot be greater than exp(− log(1/ε)2), which is just a little bit
worse than a power dependence.)

4.1 Sketch Proof of the Triangle Removal Lemma

The proof of the triangle removal lemma starts in a similar way to many applications
of the regularity lemma. We carry out the following three steps.

1. Apply the regularity lemma to the graph G with a suitable parameter η, obtaining
a partition V (G) = V1 ∪ · · · ∪ Vk into sets of approximately equal size.

2. Remove from G all edges that belong to bipartite subgraphs G(Vi,Vj ) that are
not η-regular.

3. Remove from G all edges that belong to bipartite subgraphs G(Vi,Vj ) of density
less than θ , for some suitable parameter θ .

The result is to create a graph G′ such that every bipartite subgraph G′(Vi,Vj )

that is non-empty has density at least θ and is η-regular. This is very useful, because
it means that we can apply the counting lemma.
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To see how this works for the triangle removal lemma, observe first that we have
removed at most (η + θ)n2 edges from G. Also, since G′ is a subgraph of G, we
know that G′ contains at most δn3 triangles.

But when δ is sufficiently small, this second observation actually implies that G′

contains no triangles. To see why, suppose that xyz is a triangle and let r, s and t

be such that x ∈ Vr , y ∈ Vs and z ∈ Vt . Then the three bipartite graphs G′(Vr ,Vs),
G′(Vs,Vt ) and G′(Vr ,Vt ) all contain at least one edge, from which it follows that
they are all η-regular with density at least θ . But then the counting lemma implies
(provided η is sufficiently small in terms of θ ) that those three bipartite graphs when
put together contain at least (θ3/2)|Vr ||Vs ||Vt | triangles. But each of Vr , Vs and Vt

has size approximately n/k, where k depends on η only. This is a contradiction
when δ is small enough.

Chasing the parameters, we need η+ θ ≤ ε with η at most some power of θ . And
then we can set δ = θ3/4K3, where K = K(η) is the upper bound on k that comes
from the regularity lemma. This gives the tower-type bound for 1/δ in terms of 1/ε.

4.2 Applications of the Triangle Removal Lemma

Ruzsa and Szemerédi noticed that the triangle removal lemma gave another proof
of Roth’s theorem (that is, Szemerédi’s theorem for progressions of length 3). In
this section we present a slight modification of their argument, observed by Jozsef
Solymosi [24], that yields a stronger result.

4.2.1 The Corners Theorem

Theorem 5 For every δ > 0 there exists N such that every subset A ⊂ {1, . . . ,N}2

of cardinality at least δN2 contains a triple {(x, y), (x + d, y), (x, y + d)} with
d ≠ 0.

Configurations of the form {(x, y), (x + d, y), (x, y + d)} with d ≠ 0 are some-
times called corners, and this result is sometimes referred to as the corners theorem.

To deduce the corners theorem from the triangle removal lemma, we need
to construct a graph. This is done as follows. Let X = Y = {1, . . . ,N} and let
Z = {1, . . . ,2N}. We construct a tripartite graph G with vertex sets X, Y and Z

(regarding X and Y as disjoint copies of {1, . . . ,N} rather than as the same set) as
follows.

1. x ∈ X is joined to y ∈ Y if and only if (x, y) ∈ A.
2. x ∈ X is joined to z ∈ Z if and only if (x, z − x) ∈ A.
3. y ∈ Y is joined to z ∈ Z if and only if (z − y, y) ∈ A.

If xyz forms a triangle in G, then we can set d = z − x − y, and A contains the
three points (x, y), (x, y + d) and (x + d, y). Thus, triangles in G correspond to
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corners in A. Or rather, they almost do, but if x + y = z then they don’t, since in
that case d = 0 and the “corner” is just a single point.

We therefore can’t quite deduce that G contains no triangles from the fact that
A contains no corners. Surprisingly, it turns out that this is not a setback: it is of
vital importance to the proof that there should be at least some triangles in G, as
we shall see. What we can say is that there is a one-to-one correspondence between
triangles in G and points in A. It follows that the number of triangles in G is at most
N2. Since the number of vertices in G is 4N , the hypotheses of the triangle removal
lemma are very strongly satisfied. It follows that we can remove o(N2) edges from
G to form a triangle-free graph.

However, this is easily seen to be impossible. The triangles in G are edge disjoint,
since if x + y = z and x′ + y′ = z′ then any two of the equalities x = x′, y = y′ and
z = z′ implies the third. Since there are at least δN2 triangles, one must remove
at least δN2 edges from G to make it triangle free. This contradiction implies the
corners theorem.

The above proof was not the first proof of the corners theorem: that was a result of
Ajtai and Szemerédi [4] from 1975. Their proof naturally gave the slightly stronger
result that we may take d > 0. However, as was observed by Ben Green, the two
statements are equivalent, since one can begin by intersecting A with a random
translate of −A in order to obtain a dense subset B of A with the property that if it
contains a corner with d < 0 then it must also contain a corner with d > 0. As with
many of Szemerédi’s proofs that are apparently superseded, the argument of Ajtai
and Szemerédi has turned out to have unexpected importance, serving as a model for
later arguments in situations where the regularity approach cannot easily be made
to work.

4.2.2 Another Proof of Roth’s Theorem

As suggested above, the corners theorem implies Roth’s theorem. Here is the simple
deduction. Let A be a subset of {1, . . . ,N} of density δ and let A′ ⊂ {1, . . . ,2N}2

consist of all points (x, y) such that x − y ∈ A. Then A′ has density at least δ/4, so
by the corners theorem it contains a triple {(x, y), (x + d, y), (x, y + d)}. But then
the three points x − y − d, x − y and x − y + d all lie in A and form an arithmetic
progression.

4.2.3 Property Testing

There is considerable interest amongst theoretical computer scientists in algorithms
that can test for properties of their input by making only a constant number of
queries. Given that the input has size n, which tends to infinity, this might seem a
hopeless task. However, one typically asks for approximate answers, and one wants
them to be correct with high probability rather than total certainty.
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A very simple example would be testing an input sequence of n 0s and 1s to
see whether at least half of the bits are 1s. We cannot hope to do this with only
constantly many queries, but what if we relax the requirement so that our aim is to
output one of the following two statements and be almost certain that the statement
we go for is true?

1. At least half the bits are 1s.
2. At most 51 % of the bits are 1s.

If we sample 108 bits at random, then the standard deviation of the number of
1s we get will be of order of magnitude 104, so with very high probability the
proportion of 1s in our sample will differ from the true proportion by less than
0.5 %. Therefore, we can output the first statement if the proportion of 1s in our
sample is at least 50.5 % and the second statement otherwise.

Now let us think about a more interesting problem. This time our input is a graph
G with n vertices. What we would really like to determine is whether or not the
graph contains a triangle, but we cannot hope to do that after looking at only a
constant number of edges. However, what we can do is output, with confidence, one
of the following two statements.

1. G contains a triangle.
2. G can be approximated by a triangle-free graph.

This follows directly from the triangle removal lemma. The algorithm is very
simple indeed: we randomly sample a large but constant number of triples of ver-
tices, seeing in each case whether we have the vertices of a triangle. If we ever do,
then we output “G contains a triangle” and we are 100 % certain that is correct. If
we never discover a triangle in our sample, then with high probability the proportion
of triples in G that form triangles is very small. But then, by the triangle removal
lemma, G can be approximated by a triangle-free graph.

This is typical of many property-testing results in that we either make one claim
with complete certainty or the other one with near certainty.

A great deal is now known about properties that can be tested for in this way, and
the regularity lemma is a central tool for proving such results.

5 A Sharp Upper Bound for the Ramsey Number R(3, k)

Ramsey’s theorem states that for every pair of positive integers k and l, there exists
a positive integer n such that every graph G with n vertices contains a clique of size
k or an independent set of size l. (A clique is a set of vertices such that every pair of
vertices in the set is joined by an edge. An independent set is the opposite: a set of
vertices such that no two of them are joined by an edge.)

The Ramsey number R(k, l) is the smallest n for which Ramsey’s theorem is
true. Unless k and l are small, it does not appear to be feasible to calculate Ramsey
numbers exactly, so attention has turned to asymptotics. However, even these are
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difficult to obtain with any accuracy. For example, the best known upper and lower
bounds for R(k, k) are roughly 22k and 2k/2, respectively, so the gap between them
is exponential.

A simple argument shows that R(3, k) is at most k(k + 1)/2. Indeed, let G be
a graph with n vertices. We would like to show that G contains either a triangle or
an independent set of size k. Let us assume that G does not contain a triangle. This
tells us that the neighbourhood of each vertex x (that is, the set of vertices joined
to x) contains no edges.

We shall use this observation repeatedly to create an independent set x1, . . . , xk .
Let x1 be an arbitrary vertex of G, throw away x1 and all its neighbours, and let V1
be the set of all remaining vertices. Since the neighbours of x1 form an independent
set, either we are done or there are at most k−1 of them. In the second case, let x2 be
an arbitrary vertex in V1, throw away x2 and all its neighbours from V1 and let V2 be
the set of all remaining vertices. Since the neighbours of x2 form an independent set,
which remains an independent set when x1 is included, either we are done or there
are at most k − 2 of them. Continuing in this way, we end up finding an independent
set provided that n ≥ k + (k − 1) + · · · + 1 = k(k + 1)/2.

This bound was improved in 1968 by Graver and Yackel [13] to Ck2 log log k/ log k.
Then in a paper published in 1981 Ajtai, Komlós and Szemerédi [2] improved the
bound to Ck2/ log k. They subsequently found a simpler argument [1] that (slightly
confusingly for the historian) was published in 1980. The 1981 paper remained
important for two reasons: it made progress on another interesting problem, and it
introduced the so-called semirandom method into combinatorics, which has become
a major tool with many further applications. We shall say a little about semirandom
methods in the next section, but here we give the simpler proof from the 1980 paper.

5.1 Choosing an Independent Set More Carefully

The basic strategy we presented above for proving the bound R(3, k) ≤ k(k + 1)/2
was to choose an independent set {x1, . . . , xk} greedily, exploiting the fact that in
a triangle-free graph with no independent set of size k, no vertex has degree more
than k − 1.

If we want to improve this argument, then a natural strategy is to be slightly less
greedy. For example, perhaps we could try to find a vertex of degree less than k − 1
so that we have fewer neighbours to worry about.

In general, that may not be possible, but if we look ahead a little further, then
there is something else we can try to do, namely pick the vertices xi in such a way
that when we remove their neighbourhoods, we remove as many further edges as
we can. That way, we can hope that as the selection proceeds, the average degree
in the remaining graph goes down, which enables us to pick vertices with not too
many neighbours.

The next lemma shows how to find a vertex whose removal will cause us to
remove many edges. Let us define the second degree of a vertex x in a graph to be the
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sum of the degrees of all the neighbours of x, and denote it by d2(x). Equivalently,
it is the number of paths of length 2 that start at x (counting “paths” that begin and
end at x). We also write d(x) for the degree of x.

Lemma 4 Let G be a graph with average degree t . Then there exists a vertex x

such that d2(x) ≥ td(x).

Proof We show first that
∑

x d2(x) = ∑
x d(x)2. To see this, let A be the adjacency

matrix of G. Then

∑

x

d2(x) =
∑

x,y,z

A(x, y)A(y, z) =
∑

y

∑

x,z

A(y, x)A(y, z) =
∑

y

(∑

x

A(y, x)

)2

=
∑

y

d(y)2

which is of course equal to
∑

x d(x)2. (All we have done here is count the set of
paths of length 2 in two different ways.)

It follows that Exd2(x) = Exd(x)2. Since the variance of the degrees is non-
negative, Exd(x)2 ≥ (Exd(x))2 = tExd(x). Therefore, there exists x such that
d2(x) ≥ td(x), as claimed. !

Theorem 6 Let G be a triangle-free graph with n vertices and average degree t .
Then G contains an independent set of size at least n log t/8t .

Proof By Lemma 4 we can find a vertex x such that d2(x) ≥ td(x). If d(x) > 4t

then let us remove x from the graph, and otherwise let us remove x and all its
neighbours from the graph.

In the second case, we remove d(x) + 1 vertices from the graph, and the sum
of the degrees goes down by at least 2td(x). The latter bound follows from the fact
that G contains no triangles, which means that no edge is joined to more than one
neighbour of x.

In both cases, we can then choose the largest independent set in the remainder of
the graph; in the second case we can add x to that independent set to get a larger
independent set.

Now let us define a function φ : N2 → N as follows: φ(n,m) is the minimum
size of the largest independent set that is contained in a triangle-free graph with n

vertices and m edges. Our preliminary remarks have shown that

φ(n, tn) ≥ min
{
φ
(
n − 1, t (n − 4)

)
,1 + min

d≤4t
φ
(
n − d − 1, t (n − 2d)

)}
.

Let us now prove by induction that φ(n,m) ≥ n2m−1 log(m/n)/8 = n log(m/n)/

8(m/n). Note that 2m/n is the average degree of the graph, so up to a constant a
bound of n/(m/n) is the simple-minded bound one would get if G was regular and
one just removed an arbitrary vertex and its neighbours at each stage. The interest
is in the logarithmic improvement.
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A simple back-of-envelope calculation shows that

(n − 1)2

t (n − 4)
log

(
t
n − 4
n − 1

)
≥ n

t
log t

if log t ≥ 6.This proves the inductive step in the case that φ(n, tn) ≥ φ((n −
1), t (n − 4)), provided that the average degree is not too small.

Another simple back-of-envelope calculation shows that

(n − d − 1)2

8t (n − 2d)
log

(
t

n − 2d

n − d − 1

)
+ 1 ≥ n

8t
log t

provided that d ≤ 4t . Let us actually do this second calculation, since it is the im-
portant case—that is, the case that tells us what happens when we remove a vertex
of roughly average degree and reasonably high second degree.

Since (n − d − 1)2 = n2 − 2(d − 1)n + (d − 1)2 > n(n − 2d), we can bound the
first fraction on the left-hand side below by n/8t . Therefore, it remains to prove the
inequality

log t + log
(

n − 2d

n − d − 1

)
+ 8t

n
≥ log t,

which is equivalent to the inequality

log(1 − 2d/n) − log
(
1 − (d − 1)/n

)
+ 8t/n ≥ 0.

Using the approximation log(1 + x) ≈ x (and not being too careful about justifying
it—let us assume that d/n is reasonably small and take on trust that the argument
can be made completely rigorous) we need to show that 8t/n ≥ (d + 1)/n, which
is true since d ≤ 4t . (The extra elbow room here compensates for the sloppiness
before.)

We haven’t quite finished, since it remains to discuss what happens if log t < 6. In
this case, we use the fact that the logarithmic improvement is just a constant. To be
efficient about it, we use Turán’s theorem, which implies that the largest independent
set in a graph of average degree t has size at least 1 + (n − 1)/t . We need this to be
at least n log t/8t , which it is, since log t < 6. This completes the proof. !

Corollary 1 The Ramsey number R(3, k) is bounded above by Ck2/ logk for an
absolute constant C.

Proof The bound on R(3, k) is equivalent to the assertion that a triangle-free graph
G with n vertices contains an independent set of size at least c

√
n logn for an abso-

lute constant c. This is certainly true if there is a vertex of degree at least
√

n logn,
since the neighbourhood of that vertex is an independent set. If not, then the average
degree is at most

√
n logn, and then Theorem 6 tells us that there is an independent

set of size at least c′n log(
√

n logn)/
√

n logn = c
√

n logn. !

In another famous result, Jeong Han Kim proved in 1995 a lower bound for
R(3, k) that matches the upper bound of Corollary 1 to within a constant [16]. Thus,
the result of Ajtai, Komlós and Szemerédi was shown by Kim to be best possible.
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6 A Counterexample to Heilbronn’s Triangle Conjecture

Suppose that you take n points in a unit disc. Then any three of those points define
a (possibly degenerate) triangle. How large can the area of the smallest of these
triangles be? A trivial upper bound is Cn−1: by the pigeonhole principle there must
be three points that have x-coordinates equal to within Cn−1/2, and the triangle
defined by those three points then cannot have area greater than Cn−1.

There is also a fairly simple lower bound of cn−2, due to Erdős. For convenience
let n be a prime p, and let X be the set of all points of the form (x/p,y/p) such that
0 ≤ x, y ≤ p − 1 and y ≡ x2 mod p. In other words, X is basically the graph of the
function x .→ x2 mod p. Now no three of these points lie in a line, since if they did,
then they would also lie in a line mod p, and a quadratic function can equal a linear
function in at most two places. Therefore, X contains no degenerate triangles. But
the smallest possible area of a non-degenerate triangle with vertices in Z2 is 1/2, so
the smallest triangle with vertices in X has area at least p−2/2.

Heilbronn’s conjecture was that the lower bound of cn−2 was correct. The
gap between n−2 and n−1 is embarrassingly large, and initial work of Roth and
Schmidt brought it down only very slightly: Roth [19] obtained an upper bound of
Cn−1(log logn)−1/2 in 1950, then Schmidt [23] reduced that to Cn−1(logn)−1/2 in
1972. Also in 1972, Roth [21] eventually managed to obtain an improvement in the
power of n, but to nowhere near n−2.

In 1982 (the paper was received in 1980), Komlós, Pintz and Szemerédi dis-
proved Heilbronn’s conjecture by proving the following result [18].

Theorem 7 It is possible to choose n points in the unit disc such that no three form
a triangle of area less than cn−2 logn.

That is, they obtained a logarithmic improvement over Erdős’s lower bound.
Of course, a logarithmic improvement is quite small, and one could respond by

modifying the conjecture to say that the smallest triangle has area at most n−2+ε .
However, the proof was very interesting and influential.

One particularly interesting aspect of the argument was that it reduced a geomet-
rical problem to a purely combinatorial one about hypergraphs. A k-uniform hyper-
graph is a set V of vertices and a set E of k-tuples of vertices. The k-tuples are
called hyperedges, but they are often simply called edges. A 2-uniform hypergraph
is just a graph in the normal sense.

An independent set in a k-uniform hypergraph is the obvious generalization of
what it is for a graph: it is a set of vertices such that no k of them form an edge.

The basic strategy that Komlós, Pintz and Szemerédi used to obtain their lower
bound for the Heilbronn problem was as follows.

• Begin by dropping n1+α random points into the unit disc for some small constant
α > 0.

• Define a 3-uniform hypergraph H by taking the random points as its vertices and
all triples of points that form triangles of area less than cn−2 logn as its edges.
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• Show that with high probability H has certain combinatorial properties that show
that it is “locally sparse”.

• Deduce from these local sparseness properties that H contains an independent set
of size n.

Since an independent set in H is a set of points in the unit disc such that no three
form a triangle of area less than cn−2 logn, this strategy, if it can be carried out,
disproves the Heilbronn conjecture.

Before we discuss this strategy further, it is worth looking at an observation that
Komlós, Pintz and Szemerédi make in their paper, which is that selecting points
from a random set can be used to give a different proof of Erdős’s lower bound. To
see this, let us first consider the probability that three random points form a triangle
of area less than a. If the distance between the first two points is r , then the third
point needs to lie within a strip of width 4a/r . The probability that the distance
between the first two points lies between r and r + δr is at most about 2πrδr , so an
upper bound for the probability that the three points form a triangle of area at most
a is

∫ 2
0 (4a/r)(2πr) dr = 16πa.

Therefore, if we drop 2n random points into the unit disc, the expected number
of triangles of area at most a is at most 16πa

(n
3

)
≤ 10an3. If we choose a to be

n−2/10, then this is at most n. Therefore, we can remove n points from the set and
obtain a set of n points with no triangles of area less than n−2/10.

Why should it be possible to gain anything over this simple approach if we
choose, and then discard, more points? Let me quote from an article by Imre
Bárány [5].

According to his coauthors, Szemerédi’s philosophy, that random sub-
graphs of a graph behave very regularly, and his vision that such a proof should
work, proved decisive. Since then, the method has been applied several times
and with great success.

Bárány was in fact referring to the first proof of Theorem 6 above. However, the
results are closely connected: in both cases, there is some kind of sparseness condi-
tion that allows one to find a slightly larger independent set than one might naively
think is possible. To make the connection clearer, let us look at the simple argument
above in a slightly different way. Suppose we have m random points in the unit disc,
forming a set S, and we want to choose as many of them as we can while avoiding
a triangle of area a. The expected number of triangles of area a is, as we have al-
ready seen, at most 16πam3. Therefore, each point belongs, on average, to at most
16πam2 such triangles. So if a is small enough for 16πam2 to be substantially less
than m, then we could imagine an algorithm that simply picks a random point x ∈ S,
then throws away it and all other points y ∈ S such that there is a point z ∈ S for
which the triangle xyz has area at most a. Typically, we will throw away at most
16πam2 points at each stage, so we can hope to obtain a subset of S with at least
m−1a−1/16π points.

Forgetting about the absolute constants, if m−1a−1 = n and m ≥ n, then a−1 ≥
n2, and the larger m is, the worse a becomes. So at first it looks as though the
strategy outlined above is doomed to fail. However, the argument we have just given
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is quite clearly very inefficient: if xyz is a triangle of small area, there is no need
to throw away both y and z: it is enough to throw away just one of them. To see
why this is a big help when m is large, note that if x and y are very close, then the
argument above requires us to throw away all points z in quite a wide strip about the
line that joins x and y, when to avoid all those triangles of small area it would be
enough just to throw away y.

Let us now see what the local sparseness properties are that enable one to choose
a large independent set in a hypergraph. Once we have dropped n1+α random points
into the unit disc, the expected number of pairs of points within distance n−2/3 is
at most n−4/3n2+2α = n2/3+2α . If α is small enough, this is substantially less than
n, so we can discard a small fraction of the points and end up with no two of them
closer than n−2/3.

We have already seen how to estimate the number of edges in the hypergraph H .
If a = n−2, then it is at most 16πn1+3α , so on average each vertex belongs to at
most 16πn3α edges.

Define a 2-cycle in a 3-uniform hypergraph to be a pair of edges that intersect
in a set of size 2, a simple 3-cycle to be a triple of edges of the form abx, bcy,
acz, where all of a, b, c, x, y, z are distinct, and a simple 4-cycle to be a quadruple
of edges of the form abx, bcy, cdz, adw, where again different letters stand for
distinct vertices. In a similar way to the way we estimated the number of edges, one
can show that if α is small enough, then the numbers of 2-cycles, simple 3-cycles
and simple 4-cycles are all substantially less than n, so we can remove a small
fraction of the vertices and obtain a hypergraph with no 2-cycles, simple 3-cycles or
simple 4-cycles. Komlós, Pintz and Szemerédi called such a hypergraph uncrowded
(though they say that the term was in fact invented by Joel Spencer—indeed, the
phrasing in terms of hypergraphs was Spencer’s idea as well).

The main result that Komlós, Pintz and Szemerédi proved was the following
result about 3-uniform hypergraphs. Define the degree of a vertex to be the number
of edges that contain that vertex.

Theorem 8 Let G be an uncrowded 3-uniform hypergraph with n vertices and
average degree d . Suppose that d is sufficiently large, and also at most n1/20. Then
G contains an independent set of size at least c(n/d1/2)(logd)1/2.

We shall not prove this theorem here, but we can make a few remarks. First, note
that there is an easy bound of cn/d1/2, proved as follows. If you pick a triple at
random, then the probability that it is an edge is proportional to d/n2. Therefore, if
you pick m vertices at random, then the expected number of edges that they span is
Cm3d/n2. If this is less than m/2, then you can discard at most m/2 vertices and
end up with an independent set. Solving for m we obtain the bound claimed. This is
essentially the argument we used above to rederive the Erdős lower bound.

Easy examples show that this bound is best possible if we do not impose the
uncrowdedness assumption. So what is that assumption doing for us?

To answer that question, note first that a very similar situation applied with The-
orem 6. If G is a graph (that is, a 2-uniform hypergraph) with average degree t ,
then a random set of m vertices spans Ctm2/n edges on average, and for this to be
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less than m/2 we need m = cn/t . Theorem 6 improves this bound by a logarithmic
factor under the additional assumption that G is triangle free, which is equivalent to
saying that the neighbourhood of each vertex forms an independent set.

This suggests that we should look for a condition on hypergraphs that could play
a similar role. The uncrowdedness assumption implies the following. Suppose we
pick a vertex in an uncrowded hypergraph and throw away all vertices that belong to
edges that contain x. If y and z are two such vertices, then we will lose all edges that
contain either y or z. With the uncrowdedness assumption, the edges that contain y
are all disjoint from the edges that contain z. That is because an edge that contains
both y and z would form a 2-cycle or a simple 3-cycle, and if an edge containing
y overlaps an edge containing z, then we would have either a 2-cycle or a simple
4-cycle.

There is, however, an important respect in which Theorem 8 differs from Theo-
rem 6. In the case of graphs, each time we pick a vertex to go into our independent
set, we must throw away all its neighbours. But with a 3-uniform hypergraph, if we
pick a vertex x, then what we must ensure is that for every edge xyz we do not pick
both of y and z. If we do this in a crude way by discarding all vertices that belong
to an edge that contains x, then on average we throw away d vertices each time,
and even if we can make some kind of logarithmic gain, we will end up with the
wrong power of d in our final answer. In other words, a greedy algorithm, even if
the hypergraph is very regular, gives a much worse bound than the simple random
selection described earlier.

Very roughly, the strategy of the proof is this. Instead of choosing a single point
at a time, one chooses small random sets of points to add to the independent set. If
C is the set of points that have already been chosen, then it is necessary to discard
every point z such that there exist x, y ∈ C such that xyz is an edge. So each time
a few more random points are added to C, one discards the points that need to be
discarded and then chooses the next small random set from the points that remain.

At each stage s, if Cs is the set of points chosen so far and Rs is the set of points
that remain, there is an important graph with vertex set Rs , and also an important
hypergraph. The hypergraph is just the restriction of the original hypergraph G to
Rs . The graph is the set of all pairs yz in Rs such that xyz is an edge of G for some
x ∈ Cs . For the proof to work, it is vital that when we add some randomly chosen
points from Rs to Cs to create the set Cs+1 and pass to a new set Rs+1, the set Rs+1
should resemble a randomly chosen subset of Rs , in the sense that the degrees in the
graph and hypergraph should go down in roughly the expected way.

This kind of technique has become known as the semirandom method, and has
been used to solve many problems in extremal combinatorics that had previously
appeared to be hopelessly difficult.

7 An Optimal Parallel Sorting Network

A well-known mathematical problem is to minimize the number of pairwise com-
parisons needed to sort n objects that are linearly ordered. A simple argument shows
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that log2(n!) = cn logn comparisons are necessary. Indeed, before we do any com-
parisons there are n! possible orderings compatible with the information we have
so far. But each time we do a comparison, there are two possible results, so in the
worst case the number of compatible orderings is over half what it was before the
comparison. This implies the bound stated.

It is also not very hard to match this lower bound with an upper bound of the
same form, using a recursively defined algorithm known as Mergesort. Take your
n objects and divide them into two groups of size n/2 (for convenience let us as-
sume that n is a power of 2—it is easy to remove this condition afterwards). Apply
Mergesort to each group (which we know how to do by induction). We now have
two ordered groups A and B of n/2 points, which we “merge” into an ordering of all
n points as follows. Let the elements of A be a1 < · · · < am and let the elements of
B be b1 < · · · < bm. Then we compare a1 with b1, then b2, and so on until we reach
i such that bi < a1 < bi+1. We then compare a2 with bi+1, bi+2 and so on until we
find where we can slot in a2. We keep going like this until the two sets have been
fully merged. The number of comparisons we make when doing this process is at
most 2m = n, since the number i +j increases each time we move to a new compar-
ison between some ai and some bj . Therefore, if we define f (k) to be the time that
mergesort needs to sort 2k objects, we have the recursion f (k) ≤ 2f (k − 1) + 2k .
We also know that f (1) = 1. It follows easily by induction that f (k) ≤ k.2k . Setting
n = 2k , we obtain a bound of Cn logn. (If n is not a power of 2, we can add some
dummy objects to bring the number up to the next power of 2.)

Given two bounds that are obtained by simple arguments and are equal up to
a constant, one might think that there was little more to say. However, this is not
the case. A general question of major importance in computer science is whether
algorithms can be parallelized. That is, if you have a large number of processors
(growing with the size of the problem), can you get the algorithm to run much faster?

Rather than discuss what parallel computation is in general, let us look at a simple
model that is sufficient for understanding this problem. Imagine that we have n rocks
that all look quite similar but that all have slightly different weights. Imagine also
that we have a very accurate balance that will take at most one rock on each side.
The sorting problem just discussed is equivalent to asking how many times we need
to use the balance if we want to order the rocks by weight.

For the parallel sorting problem, we can have as many balances as we like. Let us
assume that comparing two rocks takes some fixed time such as one minute. Then
what we would like to minimize is the total time needed to determine the order of the
rocks. Since we can do up to n/2 comparisons at the same time, and since cn logn

comparisons are needed, we will need to take at least c logn minutes. But can we
achieve a growth rate that is anything like as small as logarithmic?

Before I answer that question, I need to mention another word from the title of
this section. I have been discussing the word “parallel” but have not yet paid any
attention to the word “network”, which is also a critical part of what Ajtai, Komlós
and Szemerédi did. The idea here is that we decide in advance all the comparisons
we are going to do.
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More formally, a comparator network is a sequence of partitions of {1, . . . , n}
into n/2 pairs. Given a comparator network, we define a sorting algorithm as fol-
lows. At the ith stage, we use the ith partition to decide which rocks to compare: if
r and s are paired, then we take the rocks in the r th and sth places, compare them,
and put them back in the two places they came from, but switching them round if
necessary so that the heavier rock is to the right of the lighter one. The depth of a
comparator network is just the length of the sequence of partitions. If the network
correctly sorts every permutation of the rocks, then it is a sorting network.

It is initially somewhat counterintuitive that efficient sorting networks exist, since
the comparisons that are made do not depend at all on the results of earlier compari-
sions (which is quite unlike the behaviour of Mergesort). However, in 1968, Batcher
[6] constructed a relatively simple sorting network of depth C(logn)2. Here, briefly,
is how it works.

First, he shows inductively that merging two increasing sequences of length 2k−1

can be done with a comparator network of depth k. The idea is straightforward. The
odd terms of the sequences form two increasing sequences of length 2k−2, so by
induction they can be merged with a network of depth k − 1. In parallel, one can
merge the even terms. This now gives a sequence such that the odd terms are in the
right order and the even terms are as well. But it is not hard to check that because
the original sequence was increasing in both halves, the only way that the final
sequence can be out of order is if the terms in places 2r and 2r + 1 are the wrong
way round. This can be cured with one final round of comparisons, which makes a
depth of k.

This enables Mergesort to be carried out on 2k objects with a sorting network of
depth k(k + 1)/2, since if the depth needed is d(k), then d(k) ≤ d(k − 1) + k: the
d(k − 1) is needed to sort each half and the k is needed to do the merging. That
gives the C(logn)2 claimed, with a good constant C. There are reasons to think
that improving on a (logn)2 bound might be difficult, but the remarkable result of
Ajtai, Komlós and Szemerédi [3] is that there is a sorting network with the trivially
optimal depth of C logn.

The full proof of this result is quite technical, though it has been simplified over
the years. However, it is possible to give a flavour of the ideas. Let us begin with the
concept of an ε-approximate halver. Let us say that a rock is in the correct half if it
is one of the n/2 lightest rocks and is in one of the first n/2 places, or is one of the
n/2 heaviest rocks and is in one of the last n/2 places. An ε-approximate halver is a
comparator network such that for every initial permutation of the rocks, at most εn

of them do not end up in the right half when we perform the corresponding sorting
algorithm.

A natural way to build an ε-approximate halver of low depth is just to choose d

partitions randomly. Suppose we do that and then perform the algorithm. Let us say
that a place has a rock of the right type if the rock in that place is in the correct half.
If at any stage, a place has a rock of the right type, then it will have a rock of the
right type from that moment on. For instance, if one of the n/2 lightest rocks is in
one of the first n/2 places, then it can only ever be replaced by a lighter rock, so the
place will continue to have a rock of the right type.
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But at each stage of the process, if there are θn rocks in the wrong half and hence
θn/2 wrong rocks in each half, the probability that a rock in the wrong half gets
compared with a wrong rock in the other half is at least θ , and if such a comparison
takes place, then the two places are filled with rocks from the correct halves. So
to argue very crudely, for as long as there are εn rocks in the wrong half, each
place with a rock of the wrong type has a probability ε of being filled with a rock
of the correct type. So after d rounds, it has a probability at least 1 − (1 − ε)d ≈
1 − exp(−dε) of being filled with a rock of the correct type. Therefore, we can take
d to be around ε−1 log(ε−1).

If we could move all rocks to the correct half in a constant number of rounds,
then we would almost be done: all we would have to do is repeat the procedure
(in parallel) inside each half so that each rock was in the correct quarter, and so
on all the way down. But it is easy to see that this is impossible. If there are fewer
than n/2 rounds and we only ever compare rocks from different halves, then for
each place in the first half there is some place in the second half that it never gets
compared with. Pick an arbitrary place r in the first half and a place s in the second
half that is never compared with r . Then put the lightest n/2 rocks in the first half
and the heaviest n/2 rocks in the second half, except in places r and s. In those
places put rocks of the wrong type. Then none of the comparisons will move any of
the rocks.

That changes if one is allowed to make comparisons within each half, but even
then a depth of c logn is necessary. The reason is that if the depth is d then there are
at most 2d places that can hold rocks that end up in any given place, so we can put
a rock of the wrong type in the first place, say and also in all the 2d places that can
hold rocks that end up in the first place, then there will be a rock of the wrong type
in the first place at the end of the process.

To get round this difficulty, Ajtai, Komlós and Szemerédi invented a complicated
and extremely ingenious scheme for ensuring that rocks that get “left behind” are
moved at a later stage. Thus, in a sense, their network was an approximation of the
kind of network that we have just seen cannot exist.

There was one final ingredient of their argument, which turned the above ideas
from a random sorting network into a deterministic one. That was to use bipartite
expander graphs. A bipartite graph with vertex sets X and Y of the same size is
called a (λ,α, d)-expander if for every subset A ⊂ X of size at most α|X|, the
number of vertices in Y that are joined to at least one vertex in A is greater than
λ|A|, and the same for subsets of Y .

It can be shown that whenever λα < 1 and n is sufficiently large, there exists d

depending on λ and α only, and a collection of d perfect matchings between two
sets X and Y of size n, such that the union of these perfect matchings is a (λ,α, d)-
expander.

To see how this might be useful, suppose we use such a collection of matchings
to form a comparator network of depth d , taking α = ε and λ = (1 − ε)/ε. It is easy
to see that after applying the corresponding sorting algorithm, we cannot be left
with εn/2 heavy rocks in the light places and εn/2 light rocks in the heavy places.
To see this, suppose that we have a set A of εn/2 places on the light side and a set
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B of εn/2 places on the heavy side. In each place on the light side, rocks only ever
get lighter, and in each place on the heavy side, rocks only ever get heavier. The
expansion property guarantees that there is an edge in the graph between A and B .
Therefore, a comparison must have happened between a rock at place a ∈ A and
a rock at place b ∈ B , after which the rock in place a will always be lighter than
the rock in place b. This shows that it cannot be the case that after the compar-
isons, all the rocks in A are in the heavy half and all the rocks in B are in the light
half.

8 A Theorem on Point-Line Incidences

Suppose that you have n points x1, . . . , xn and m lines L1, . . . ,Lm in the plane. An
incidence is simply a pair (i, j) such that xi ∈ Lj . The following question sounds
almost too simple to be interesting: how many incidences can there be? The answer,
discovered by Szemerédi and Trotter, turned out to be very interesting indeed: their
result is not simple at all, and its numerous consequences have made it a central
result in combinatorial geometry.

The Szemerédi–Trotter theorem is the following statement [27].

Theorem 9 Amongst any n points and m lines the number of incidences cannot be
greater than C(m + n + (mn)2/3).

This bound looks a little strange at first, but a few observations make it
seem more natural. To begin with, we could equally well write the bound as
C max{m,n, (mn)2/3}. The form of the bound is telling us that there are essentially
three competing examples, and which one is best depends on the relative sizes of m

and n.
It is easy to see that we can have m incidences or n incidences: we just take

m lines containing a point or n points along a line. To see how to obtain (mn)2/3

incidences, consider the grid {1,2, . . . , r} × {1,2, . . . , s} in Z2. For each pair of
points (a,1) and (a + d,2) such that 1 ≤ a ≤ r/2 and 1 ≤ d ≤ r/2s, the line joining
(a,1) to (b,2) intersects this grid at all the s points (a,1), (a + d,2), . . . , (a + (s −
1)d, s). There are r2/4s such lines.

Therefore, we can find a set of rs points and r2/4s lines with r2/4 incidences.
So for given m and n we need to solve the equations rs = n and r2/4s = m. This
requires n to be at most m2 (up to a constant) and m to be at most n2 (also up to a
constant). But if these inequalities do not hold, then one of m and n is bigger than
(mn)2/3.

This shows that the bound obtained by Szemerédi and Trotter is best possible.
For almost all of this article, I have focused on Szemerédi’s original arguments,

or slightly cleaned up versions of the arguments that have been produced since.
In this case, however, there is a beautiful short proof discovered by Székely [25]
that can be presented in full, and it seems a pity not to give it. As with most of
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Szemerédi’s proofs, however, his original proof of Theorem 9 is still interesting and
important: there are certain generalizations that can be proved with his method that
do not appear to be provable using the technique I am about to describe.

8.1 Székely’s Proof of the Szemerédi–Trotter Theorem

The observation on which Székely’s proof crucially depends is that a set of points
and lines can be used to define a graph, and that graph has many vertices and edges.
The graph is a very obvious one: its vertices are the points, and two vertices are
joined if they appear consecutively along one of the lines.

If there are n points, m lines and t incidences, then the graph has n vertices and
t − m edges. The reason for the last assertion is that a line with k points on it gives
rise to k − 1 edges. (I am assuming here, as I may, that each line contains at least
one of the points.)

Something else that we know about this graph is that it can be drawn in the plane
with at most

(m
2

)
crossings—that is, edges that are represented by intersecting curves

(which happen in this case to be line segments). However, it turns out that we can
also get a lower bound on the number of crossings, and that means that we are in
business.

Lemma 5 Let G be a graph with n vertices and m edges. Then any drawing of G

in the plane (whether edges are represented by line segments or by more general
curves) must have at least m3/72n2 crossings.

Proof Euler’s formula tells us that if G is a planar graph with V vertices, E edges
and F faces, then V − E + F = 2. Since every face is bounded by at least three
edges (if V ≥ 3), and every edge is contained in at most two faces, 2E ≥ 3F , so
V − E + 2E/3 ≥ 2, which implies that E ≤ 3V − 6.

To put this result a different way, if we have a drawing of a graph with n vertices
and more than 3n − 6 edges, then there must be at least one crossing. It follows
that a drawing of a graph with n vertices and m edges must have at least m − 3n

crossings, since we can repeat the following process at least m−3n times (in fact, at
least m − 3n + 6 times): find an edge involved in a crossing and remove it, thereby
destroying that crossing.

Now a simple averaging argument allows us to improve this bound for large m.
Let G be a graph with n vertices and m edges, and choose a random subgraph H

of G by picking each vertex independently with probability p. Suppose that G has
been drawn with t crossings. Then the expected number of vertices in H is pn

and the expected number of crossings is p4t , since for a crossing to belong to the
subgraph, all four vertices of the two crossing edges must survive.

But the expected number of edges is p2m, so the expected number of crossings
is also at least pm − 3pn by the bound above. It follows that p4t ≥ p2m − 3pn.
Choosing p to be 6n/m, we find that t ≥ p−2m/2 = m3/72n2. !
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Applying Lemma 5 to the graph described above, we deduce that
(m

2

)
≥ (t −

m)3/72n2. Therefore, if t ≥ 2m, we may deduce that m2 ≥ ct3/n2, which gives us
the upper bound t ≤ C(mn)2/3.

8.2 An Application of the Szemerédi–Trotter Theorem

A major conjecture in additive combinatorics, due to Erdős and Szemerédi [11],
states that if A is a set of integers of size n, then one of A + A = {x + y : x, y ∈ A}
and A.A = {xy : x, y ∈ A} must have size at least n2−ε . Since the largest possible
size of the sumset or product set is n(n+ 1)/2, this is saying that one or other of the
two sets must have near-maximal size.

It is not easy to obtain any non-trivial lower bound, but with the help of the
Szemerédi–Trotter theorem one can show that either A + A or A.A has size at least
n5/4. More precisely, we have the following result. The beautiful proof is due to
Elekes [9].

Theorem 10 Let A be a set of size n. Then |A + A||A.A| ≥ cn5/2.

Proof As our set of points we take the Cartesian product (A + A) × (A.A) and
suppose that this set has size t . As our lines we take every line of the form {(a +
λ,λb) : λ ∈ R} with a, b ∈ A. Each such line intersects (A + A) × (A.A) once
for every λ ∈ A, and therefore in n points. Therefore, since there are n2 lines, the
number of incidences is n3. By the Szemerédi–Trotter theorem it follows that n3 ≤
C max{t, n2, t2/3n4/3}. It follows that either t ≥ cn3, in which case we are trivially
done, or Ct2/3n4/3 ≥ n3, which translates into the stated bound t ≥ cn5/2. !

The Szemerédi–Trotter theorem and modifications of it have been used to obtain
many partial results in combinatorial geometry. Some of these exploit the fact that
we can replace the lines in the theorem by any collection of curves, provided that no
two of those curves intersect in more than a bounded number of points. For example,
the Erdős distance problem asks whether given any set of n points in the plane
there must be at least n1−ε distinct distances between them. If there are very few
distances, then there are many circles about points in the set that contain many other
points in the set. This gives us a set of curves with many point-curve incidences. The
argument is not as straightforward as that makes it sound, because two points can
belong to several different circles, so the crossing lemma needs to be generalized
to graphs with multiple edges and applied accordingly. But if two points x and y
belong to many circles, then the centres of those circles all lie in a line. Therefore,
if we have many examples of pairs of points that belong to many circles in the set,
we have a system of lines that contain many points in the set and can apply the
Szemerédi–Trotter theorem again.

Recently, in a major breakthrough, the Erdős distance problem was solved by
Guth and Katz using different methods [14]. However, the Szemerédi–Trotter theo-
rem continues to be a very important tool.
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8.3 What Are the Extremal Sets in the Szemerédi–Trotter
Theorem?

Let us end this section with a fascinating and somewhat open-ended question (which
I learned from Jozsef Solymosi).

Question 1 Let P be a set of n points and let L be a set of n lines. Suppose that
there are at least 10−10n4/3 incidences between P and L. What can be said about
the structures of P and L?

An answer to this question would fit very well a recurring theme in extremal
combinatorics, which is to take an extremal result and to ask what happens in the
near-extremal cases. For most such problems, we have an inequality and can say
what happens when equality occurs. To give a simple example, if A is a set of n

numbers, then |A + A| ≥ 2n − 1, and equality holds if and only if A is an arith-
metic progression. However, with the Szemerédi–Trotter theorem, the exact best
possible bound is not known, so obtaining a structural result for any bound seems to
be challenging. In the case of sumsets, a beautiful theorem of Freiman completely
characterizes, at least qualitatively, all sets A such that |A + A| ≤ C|A| for some
fixed constant C: each such set has to be a large subset of a generalized arithmetic
progression of low dimension. Here, one might be looking for some kind of grid-
like structure. This would follow from known results (one of which is Freiman’s
theorem itself) if one could show that there had to be cn3 quadruples of points in P

that formed the vertices of (possibly degenerate) parallelograms.

9 The Probability that a Random ±1 Matrix is Singular

Let M be a random n×n matrix where each entry has a 50 % chance of being 1 and
a 50 % chance of being −1, with all choices independent. What is the probability
that M is singular? Equivalently, what is the probability that if you choose n random
01-sequences of length n, then one of them will be in the linear span of the others?

This very basic question is surprisingly difficult to answer. Even to show that
the probability tends to zero was a non-trivial open problem, solved by Komlós in
1967 [17]. (In this case the discrepancy between publication date and the date of
the actual proof is quite large: the result was obtained in 1963.) He proved that the
probability is at most C/

√
n.

There is a natural conjecture for the correct bound, which is (2+o(1))
(n

2

)
2−(n−1).

The heuristic argument for this is that by far the easiest way to obtain a linear de-
pendence amongst the rows of a random ±1 matrix ought to be to have two rows or
two columns that are equal up to a ±1 multiple.

The truth of this conjecture is still an open problem, and one that appears to need
a major new idea. Given that situation, the next strongest aim it was reasonable to
have was to prove that the probability was exponentially small. This too seemed out
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of reach, so it was a big surprise when Kahn, Komlós and Szemerédi proved it in
1995 [15]. In the remainder of this section, let us look at some of the ideas that were
involved in their proof.

9.1 The Need to Consider Dependences

One might attempt to prove the result in the following way, which works for many
problems.

• Express the event E whose probability we are trying to estimate as a union of
simple events.

• Give upper bounds for the probabilities of the simple events.
• Use the trivial “union bound” (that is, just add up the probabilities of the simple

events) as an upper bound for the original event E.

In our case, E is the event that a random n × n ±1 matrix M is singular. But
M is singular if and only if Ma = 0 for some a ∈ Rn, so an obvious candidate for
the set of simple events is to take all events of the form “Ma = 0”. Let us call this
event Ea .

Obviously this won’t do as it stands, since there are infinitely many possible a.
However, we could try to identify a finite set A of vectors a such that if M is singular
then there exists a ∈ A such that Ma = 0. Such sets trivially exist: for each singular
matrix M we pick a vector a such that Ma = 0 and then we put together these
vectors to form our set A. However, they do not necessarily help us. For example,
let F be the set of all ±1 matrices that have two pairs of equal columns. For each
matrix M ∈ F , let a be a vector with four non-zero coordinates that take the values
±λ and ±µ in such a way that Ma = 0, and make sure that no one of these vectors
is a multiple of another. The number of vectors we create is at least 2n(n−2), and for
each such vector a the probability that Ma = 0 is at least 2−2n. Multiplying these
numbers together we get 2n(n−4), which is far bigger than 1 and therefore tells us
nothing.

Of course, it was perverse of us to make sure that no two of the vectors were
multiples of each other: if we had taken λ = µ = 1 for every single vector, then the
number of vectors would have dropped to cn4. But the point is nevertheless made
that for a union bound to work one would have to obtain a great deal of duplication
of this kind, which is not obviously possible.

Kahn, Komlós and Szemerédi use a natural generalization of this approach. In-
stead of using the trivial fact that if a = b then the events Ea and Eb are the same,
so that only one of them needs to be considered in a union bound, they show that if
several vectors ai belong to a low-dimensional subspace S, then the events Eai are
highly correlated, with the result that the event

⋃
i Eai has a much smaller probabil-

ity than
∑

i P (Eai ). In other words, linear dependencies lead to useful probabilistic
dependencies.
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9.1.1 The Probability that Ma = 0

Nevertheless, it is useful to think about the events Ea and in particular about their
probabilities. Given a vector a, let p(a) be the probability that

∑
i εiai = 0, where

(ε1, . . . , εn) is a random ±1 sequence. Then the probability that Ma = 0 is p(a)n.
What sort of values can p(a) take?

• If a is the vector (1,1, . . . ,1), then p(a) is around n−1/2.
• More generally, if a takes the value ±1 d times and 0 otherwise, then p(a) is

around d−1/2.
• The Littlewood-Offord inequality, or rather a slight improvement of it due to

Erdős, implies a sort of converse to this observation: if the support of a has size
d , then p(a) ≤ d−1/2.

• Sárközy and Szemerédi proved that if a1, . . . , an are distinct, then p(a) ≤
Cn−3/2.

Thus, for p(a) to be large, we need a to have small support and many repeated
entries.

9.1.2 Dealing with Vectors a for which p(a) Is Very Small

A simple lemma shows that we can at least disregard all vectors a for which p(a) is
exponentially small.

Lemma 6 For every p ∈ [0,1] the probability that there exists a such that p(a) ≤ p
and Ma = 0 is at most np.

Proof Let E(p) be the event that such a vector a exists. Let us condition on the
entire matrix M apart from the ith row, and bound from above the probability, given
those n(n − 1) values, that E(p) holds and the ith row is in the linear span of the
other rows.

Now for E(p) to hold conditional on these values, there must exist a with p(a) ≤
p that is orthogonal to all rows apart from the ith. Pick any such vector a. For the
ith row to be a linear combination of the other rows, it is necessary that it too should
be orthogonal to a, and this happens with probability at most p.

For E(p) to hold in general, there must exist a row of M that is in the linear span
of the other rows. The lemma follows. !

9.1.3 Applying Linear Dependence

A similar argument shows that we can improve the bound in Lemma 6 if we insist
that a belongs to a k-codimensional subspace.

Lemma 7 Let S be a k-codimensional subspace and let 0 ≤ p ≤ 1. Then the prob-
ability that there exists a ∈ S such that p(a) ≤ p and Ma = 0 is at most

( n
k+1

)
pk+1.
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Proof For such an a to exist, it is necessary that the kernel of M intersects S. There-
fore, writing Vj for the orthogonal complement of the span of the first j rows of M ,
there can be at most n − k − 1 values of j for which Vj ∩ S is a proper subset of
Vj−1 ∩ S.

Now let us fix a set J of size n−k−1 and assume that j ∈ J whenever Vj ∩S ⊄=
Vj−1 ∩ S. Let us condition on the values of M in the n − k − 1 rows corresponding
to J .

Now let j /∈ J . By construction, Vj ∩S = Vj−1 ∩S, so if Ma = 0 with p(a) ≤ p,
then a ∈ Vj−1, which implies that a ∈ Vj and hence that a must be orthogonal to
the j th row of M , which happens with probability at most p. We can apply this
argument to each of the k + 1 rows not corresponding to elements of J , and since
those rows are independent, we obtain an upper bound of pk+1 for that choice of J .
Applying the law of total probability and summing over all J gives the result. !

9.2 The Main Idea

Let us informally refer to a vector a as bad if p(a) is large (meaning greater than
(1 − ε)n for some suitable ε). For Lemma 7 to be useful, we need to be able to
show that we can cover the bad vectors efficiently with subspaces of fairly low
dimension. To this end, Kahn, Komlós and Szemerédi prove a result that seems
at first glance to be rather unlikely to be true. Let a1, . . . , an are integers and let
µ > 0 be a smallish absolute constant. Consider the following two random walks.
At time t , the first walk chooses a random step of ±at , each with probability 1/2.
The second walk chooses a random step of ±at , each with probability µ, and a step
of 0 with probability 1 − 2µ. Their result is that, no matter what the initial sequence
a1, . . . , an was, as long as it has a reasonably large support, the probability that the
first walk ends up at 0 is smaller by a factor of O(

√
µ) than the probability that the

second walk ends up at 0.
Because the binomial distribution is highly concentrated about its mean, the sec-

ond walk is similar, but not identical, to a walk where we first randomly choose
d = 2µn of the ai , replace all the others by 0, and then do a normal random walk
with the new sequence. So it might seem that the result cannot be true if, for ex-
ample, we take the sequence 1,2,4, . . . ,2n−2,−(2n−1 − 1), in which case the only
way of getting back to the origin is to take all signs positive or all signs negative.
However, in this case the probability of ending at 0 with the first walk is 2−(n−1),
while the probability with the second walk is 2µn + (1−2µ)n, which is much larger
as long as µ is smaller than 1/4. However, in this case the result is not really telling
us very much: for it to be useful we need p(a) not to be too small, which, roughly
speaking, allows us to assume that the higher probability in the second walk arises
for non-trivial reasons.
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9.2.1 A Very Rough Sketch of the Main Argument

To see how all this helps, recall that our aim is to choose a collection of subspaces
of not too large dimension that cover all the “bad” vectors a. A bad vector is one for
which p(a) is large, and the main step described above implies that if p(a) is large,
then for some d close to λn, the probability that a random ±1 sum of d randomly
chosen entries of a is 0 is larger than p(a) by at least a factor c

√
λ.

Now let us choose a subspace S randomly as follows. Define a d-vector to be a
vector in {1,−1,0}n that takes non-zero values exactly d times. Also, given a vector
a, define a d-sum of a to be a ±1-sum of d terms of a. Equivalently, it is the inner
product of a with a d-vector. For a suitable γ , choose (1 − γ )n d-vectors at random
and let S be the orthogonal complement of the space spanned by these d-vectors.
Thus, a ∈ S if and only if every d-sum of a that corresponds to one of the d-vectors
we have chosen is 0. If we know that the probability that a random d-sum of a is
0 is greater by a factor c

√
λ than p(a), then the probability that a belongs to the

γn-dimensional subspace S is greater by a factor (c
√

λ)(1−γ )n than the bound of
roughly p(a)(1−γ )n that comes from Lemma 7.

We can now partition the interval [(1 − ε)n,1] into not too many subintervals
of ps of approximately the same size. If we apply Lemma 7 to a particular value
of p, then each subspace we apply it to contributes roughly p(1−γ )n (the binomial
coefficient turns out not to make too much difference so I am ignoring it). But since
the probability that a vector a with p(a) ≈ p belongs to a random such subspace is
more like (Cλ−1/2)np(1−γ )n, the number of such subspaces that we need to cover
all the a with p(a) ≈ p is roughly (cλ1/2)np−(1−γ )n, and the total contribution is
(cλ1/2)n, which is exponentially small. Adding up the contributions of this kind, we
find that they are dominated by the contribution of n(1 − ε)n that came from the a

for which p(a) is very small, and the result is proved.

9.3 Subsequent Improvements

The bound obtained by Kahn, Komlós and Szemerédi was around (0.999)n. In 2006
this was slightly improved, to (0.953)n, by Tao and Vu [29]. The following year
they obtained a bound of (3/4 + o(1))n using methods from additive combinatorics
[30]. The current record is (1/

√
2 + o(1))n. This is a very recent result (it appeared

in 2013) of Bourgain, Vu and Wood [7].

10 Conclusion

Szemerédi’s work has several qualities that make it stand out and that make him
one of the great mathematicians of the second half of the twentieth century, not to
mention the beginning of the twenty-first. An obvious one is the sheer difficulty of so
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many of his results. He has often solved open problems on which the mathematical
community had become completely stuck, and his ingenious and delicate solutions
have often left other mathematicians feeling that they were in a sense right to be
stuck. Another quality that many of his results have had, and that the very best
results in combinatorics have, is that the proofs have introduced techniques and
ideas with applications that go far beyond the original problems that Szemerédi
was solving. His influence permeates the whole of combinatorics and theoretical
computer science, fully justifying the award of the Abel Prize.
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12. Erdős, P., Turán, P.: On some sequences of integers. J. Lond. Math. Soc. 11, 261–264 (1936)
13. Graver, J.E., Yackel, J.: Some graph theoretic results associated with Ramsey’s theorem.

J. Comb. Theory 4, 125–175 (1968)
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