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We present a (randomized) test for monotonicity of Boolean functions. Namely, given the
ability to query an unknown function f : {0,1}n →{0,1} at arguments of its choice, the
test always accepts a monotone f , and rejects f with high probability if it is ε-far from
being monotone (i.e., every monotone function differs from f on more than an ε fraction
of the domain). The complexity of the test is O(n/ε).

The analysis of our algorithm relates two natural combinatorial quantities that can
be measured with respect to a Boolean function; one being global to the function and the
other being local to it. A key ingredient is the use of a switching (or sorting) operator on
functions.

1. Introduction

In this work we address the problem of testing whether a given Boolean
function is monotone. A function f :{0,1}n→{0,1} is said to be monotone
if f(x) ≤ f(y) for every x ≺ y, where ≺ denotes the natural partial order
among strings (i.e., x1 · · ·xn ≺ y1 · · ·yn if xi ≤ yi for every i and xi < yi for
some i). The testing algorithm can request the value of the function on
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arguments of its choice, and is required to distinguish monotone functions
from functions that are far from being monotone.

More precisely, the testing algorithm is given a distance parameter ε>0,
and oracle access to an unknown function f mapping {0,1}n to {0,1}. If
f is a monotone then the algorithm should accept it with probability at
least 2/3, and if f is at distance greater than ε from any monotone function
then the algorithm should reject it with probability at least 2/3. Distance
between functions is measured in terms of the fraction of the domain on
which the functions differ. The complexity measures we focus on are the
query complexity and the running time of the testing algorithm.

We present a randomized algorithm for testing the monotonicity property
whose query complexity and running time are linear in n and 1/ε. The
algorithm performs a simple local test: It verifies whether monotonicity is
maintained for randomly chosen pairs of strings that differ exactly on a single
bit. In our analysis we relate this local measure to the global measure we
are interested in — the minimum distance of the function to any monotone
function.

1.1. Perspective

Property Testing, as explicitly defined by Rubinfeld and Sudan [36] and
extended in [26], is best known by the special case of low degree testing1 (see
for example [17,24,36,35,7]), which plays a central role in the construction of
probabilistically checkable proofs (pcp) [9,8,22,6,5,35,7]. The recognition
that property testing is a general notion has been implicit in the context
of pcp: It is understood that low degree tests as used in this context are
actually codeword tests (in this case of BCH codes), and that such tests can
be defined and performed also for other error-correcting codes such as the
Hadamard Code [5,13,14,11,12,33,37], and the “Long Code” [12,29,30,37].

For as much as error-correcting codes emerge naturally in the context of
pcp, they do not seem to provide a natural representation of objects whose
properties we may wish to investigate. That is, one can certainly encode any
given object by an error-correcting code — resulting in a (legitimate yet)
probably unnatural representation of the object — and then test properties
of the encoded object. However, this can hardly be considered as a “natural
test” of a “natural phenomena”. For example, one may indeed represent a
graph by applying an error correcting code to its adjacency matrix (or to its

1 That is, testing whether a function (over some finite field) is a polynomial of some
bounded degree d, or whether it differs significantly from any such polynomial.



TESTING MONOTONICITY 303

incidence list), but the resulting string is not the “natural representation”
of the graph.

The study of Property Testing as applied to natural representation of
non-algebraic objects was initiated in [26]. In particular, Property Testing
as applied to graphs has been studied in [26–28,2,3,34,15], where graphs
are either represented by their adjacency matrix (most adequate for dense
graphs), or by their incidence lists (adequate for sparse graphs).

In this work we consider property testing as applied to the most generic
(i.e., least structured) object – an arbitrary Boolean function. In this case
the choice of representation is “forced” upon us.

1.2. Monotonicity

In interpreting monotonicity it is useful to view Boolean functions over
{0,1}n as subsets of {0,1}n, called concepts. This view is the one usually
taken in the PAC Learning literature. Each position in {1, . . . ,n} corresponds
to a certain attribute, and a string x= x1 · · ·xn ∈ {0,1}n represents an in-
stance where xi=1 if and only if the instance x has the ith attribute. Thus,
a concept (subset of instances) is monotone if the presence of additional at-
tributes maintains membership of instances in the concept (i.e., if instance
x is in the concept C then any instance resulting from x by adding some
attributes is also in C).

The class of monotone concepts is quite general and rich. On the other
hand, monotonicity suggests a certain aspect of simplicity. Namely, each
attribute has a uni-directional effect on the value of the function. Thus,
knowing that a concept is monotone may be useful in various applications. In
fact, this form of simplicity is exploited by Angluin’s learning algorithm for
monotone concepts [4], which uses membership queries and has complexity
that is linear in the number of terms in the DNF representation of the target
concept.

We note that an efficient tester for monotonicity is useful as a prelim-
inary stage before employing Angluin’s algorithm. As is usually the case,
Angluin’s algorithm relies on the premise that the unknown target concept
is in fact monotone. It is possible to simply apply the learning algorithm
without knowing whether the premise holds, and hope that either the algo-
rithm will succeed nonetheless in finding a good hypothesis or detect that
the target is not monotone. However, due to the dependence of the complex-
ity of Angluin’s algorithm on the number of terms of the target concept’s
DNF representation, it may be much more efficient to first test whether the
function is at all monotone (or close to it).
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1.3. The natural monotonicity test

In this paper we show that a tester for monotonicity is obtained by repeating
the following O(n/ε) times: Uniformly select a pair of strings at Hamming
distance 1 and check if monotonicity is satisfied with respect to the value of
f on these two strings. That is,
Algorithm 1. On input n,ε and oracle access to f :{0,1}n→{0,1}, repeat
the following steps up to n/ε times

1. Uniformly select x=x1 · · ·xn∈{0,1}n and i∈{1, . . . ,n}.
2. Obtain the values of f(x) and f(y), where y results from x by flipping

the ith bit (that is, y=x1 · · ·xi−1 x̄ixi+1 · · ·xn).
3. If x,y,f(x),f(y) demonstrate that f is not monotone then reject.

That is, if either (x≺y)∧(f(x)>f(y)) or (y≺x)∧(f(y)>f(x)) then reject.

If all iterations are completed without rejecting then accept.

Theorem 1. Algorithm 1 is a testing algorithm for monotonicity. Further-
more, if the function is monotone then Algorithm 1 always accepts.

Theorem 1 asserts that a (random) local check (i.e., Step 3 above) can
establish the existence of a global property (i.e., the distance of f to the
set of monotone functions). Actually, Theorem 1 is proven by relating two
quantities referring to the above: Given f : {0,1}n →{0,1}, we denote by
δM(f) the fraction of pairs of n-bit strings, differing on one bit that violate
the monotonicity condition (as stated in Step 3). We then define εM(f) to
be the distance of f from the set of monotone functions (i.e., the minimum
over all monotone functions g of |{x : f(x) 
= g(x)}|/2n). Observing that
Algorithm 1 always accepts a monotone function, Theorem 1 follows from
Theorem 2, stated below.

Theorem 2. For any f :{0,1}n→{0,1},

δM(f) ≥ εM(f)
n

.

On the other hand,

Proposition 3. For every function f :{0,1}n→{0,1}, εM(f)≥δM(f)/2.

Thus, for every function f

εM(f)
n

≤ δM(f) ≤ 2 · εM(f)(1)
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A natural question that arises is that of the exact relation between δM(·)
and εM(·). We observe that this relation is not simple; that is, it does not
depend only on the values of δM(·) and εM(·). Moreover, we show that both
the lower and the upper bound of Equation (1) may be attained (up to a
constant factor).

Proposition 4. For every c<1, for any sufficiently large n, and for any α
such that 2−c·n≤α≤ 1

2 :

1. There exists a function f :{0,1}n→{0,1} such that α≤εM(f)≤2α and

δM(f) =
2
n
· εM(f).

2. There exists a function f :{0,1}n→{0,1} such that (1−o(1))·α≤εM(f)≤
2α and

δM(f) = (1± o(1)) · (1− c) · εM(f).

Perspective. Analogous quantities capturing local and global properties
of functions were analyzed in the context of linearity testing. For a function
f :{0,1}n→{0,1} (as above), one may define εlin(f) to be its distance from
the set of linear functions and δlin(f) to be the fraction of pairs, (x,y) ∈
{0,1}n×{0,1}n for which f(x)+f(y) 
=f(x⊕y). A sequence of works [17,13,
14,11] has demonstrated a fairly complex behavior of the relation between
δlin(·) and εlin(·). The interested reader is referred to [11].
Previous Bound on δM(f). This paper is the journal version of [25].
In [25], a weaker version of Theorem 2 was proved. In particular it was
shown that δM(f) = Ω

(
εM(f)

n2 log(1/εM(f))

)
, thus yielding a testing algorithm

whose complexity grows quadratically with n instead of linearly (as done
here). Furthermore, the proof was more involved and the techniques did not
lend themselves to obtain the results obtained subsequently (and presented
in this paper) for testing monotonicity over domain alphabets other than
{0,1}.

1.4. Monotonicity testing based on random examples

Algorithm 1 makes essential use of queries. We show that this is no coinci-
dence – any monotonicity tester that utilizes only uniformly and indepen-
dently chosen random examples, must have much higher complexity.

Theorem 5. For any ε=O(n−3/2), any tester for monotonicity that only
utilizes random examples must use at least Ω(

√
2n/ε) such examples.
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Interestingly, this lower bound is tight (up to a constant factor).

Theorem 6. There exists a tester for monotonicity that only utilizes ran-
dom examples and uses at most O(

√
2n/ε) examples, provided2 ε>n2 ·2−n.

Furthermore, the algorithm runs in time poly(n) ·
√
2n/ε.

We note that the above tester is significantly faster than any learning
algorithm for the class of all monotone concepts when the allowed error
is O(1/

√
n): Learning (under the uniform distribution) requires Ω(2n/

√
n)

examples (and at least that many queries) [31].3

1.5. Extensions

1.5.1. Other domain alphabets. Let Σ be a finite alphabet, and <Σ

a (total) order on Σ. Then we can extend the notion of monotonicity to
Boolean functions over Σn, in the obvious manner: Namely, a function f :
Σn →{0,1} is said to be monotone if f(x)≤ f(y) for every x≺Σ y, where
x1 · · ·xn≺Σ y1 · · ·yn if xi≤Σ yi for every i and xi<Σ yi for some i.

A straightforward generalization of our algorithm yields a testing algo-
rithm for monotonicity of functions over Σn with complexity O

(
|Σ| · nε

)
. By

modifying the algorithm we can obtain a dependence on |Σ| that is only
logarithmic instead of linear. By an alternative modification we can remove
the dependence on |Σ| completely at the cost of increasing the dependence
on n/ε from linear to quadratic.

1.5.2. Other ranges. We may further extend the notion of monotonicity
to finite ranges other than {0,1}: Let Ξ be a finite set and <Ξ a (total)
order on Ξ. We say that a function :Σn →Ξ is monotone if f(x)≤Ξ f(y)
for every x≺Σ y. We show that every algorithm for testing monotonicity of
Boolean function that works by observing pairs of strings selected according
to some fixed distribution (as our algorithms do), can be transformed to
testing monotonicity of functions over any finite range Ξ. The increase in

2 For ε≤n2 ·2−n, an algorithm that obtains O(n ·2n)= poly(n) ·
√
2n/ε examples, can

fully recover the function, and so easily determine whether it is monotone.
3 This lower bound on the number of examples (or queries) can be derived by consid-

ering the following subclass of monotone concepts. Each concept in the class contains all
instances having �n/2�+1 or more 1’s, no instances having �n/2� − 1 or less 1’s, and
some subset of the instances having exactly �n/2� 1’s. In contrast, “weak learning” [32]
is possible in polynomial time. Specifically, the class of monotone concepts can be learned
in polynomial time with error at most 1/2−Ω(1/

√
n) [16] (though no polynomial-time

learning algorithm can achieve an error of 1/2−ω(log(n)/
√

n)) [16]).
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the complexity of the algorithm is by a multiplicative factor of |Ξ|. Recently,
Doddis, Lehman and Raskhodnikova have devised a transformation whose
dependency on the size of the range is only logarithmic [20].

1.5.3. Testing unateness. A function f : {0,1}n → {0,1} is said to be
unate if for every i∈{1, . . . ,n} exactly one of the following holds: whenever
the ith bit is flipped from 0 to 1 then the value of f does not decrease; or
whenever the ith bit is flipped from 1 to 0 then the value of f does not
decrease. Thus, unateness is a more general notion than monotonicity. We
show that our algorithm for testing monotonicity of Boolean functions over
{0,1}n can be extended to test whether a function is unate or far from any
unate function at an additional cost of a (multiplicative) factor of

√
n.

1.6. Techniques

Our main results are proved using shifting of Boolean functions (associated
with subsets of {0,1}n). Various shifting techniques play an important role
in extremal set theory (cf., [23] as well as [1,19]).

Shifting a Boolean function means modifying the set of inputs on which
the value of the function is 1. The modification is chosen accordingly to
the desired application. A typical application is for showing that a function
has a certain property. This is done by shifting the function so that the
resulting function is simpler to analyze, whereas shifting does not introduce
the property in question.

Our applications are different. We shift the function to make it monotone,
while using a “charging” operator to account for the number of changes made
by the shifting process. This “charge” is on one hand related to the distance
of the function from being monotone, and on the other hand related to the
local check conducted by our testing algorithm.

Actually we will be using several names for the same procedure – sorting
and switching will also make an appearance.

1.7. Related work

The “spot-checker for sorting” presented in [21, Sec. 2.1] implies a tester for
monotonicity with respect to functions from any fully ordered domain to any
fully ordered range, having query and time complexities that are logarithmic
in the size of the domain. We note that this problem corresponds to the
special case of n=1 of the extension discussed in Subsection 1.5 (to general
domains and ranges).
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1.8. An open problem

Our algorithm (even for the case f :{0,1}n→{0,1}), has a linear dependence
on the dimension of the input, n. As shown in Proposition 4, this depen-
dence on n is unavoidable in the case of our algorithm. However, it is an
interesting open problem whether other algorithms may have significantly
lower dependence on n.

Organization

Theorem 2 is proved in Section 3. Propositions 3 and 4 are proved in Sec-
tion 4. The extension to domains alphabets and ranges other than {0,1}, is
presented in Section 5, and the extension to testing Unateness is described
in Section 6. Theorems 5 and 6 are proved in Section 7.

2. Preliminaries

For any pair of functions f,g :{0,1}n→{0,1}, we define the distance between
f and g, denoted dist(f,g), to be the fraction of instances x∈{0,1}n on which
f(x) 
= g(x). In other words, dist(f,g) is the probability over a uniformly
chosen x that f and g differ on x. Thus, εM(f) as defined in the introduction
is the minimum, taken over all monotone functions g of dist(f,g).

A general formulation of Property Testing was suggested in [26], but here
we consider a special case formulated previously in [36].

Definition 1. (property tester): Let P=∪n≥1Pn be a subset (or a property)
of Boolean functions, so that Pn is a subset of the functions mapping {0,1}n
to {0,1}. A (property) tester for P is a probabilistic oracle machine4, M ,
which given n, a distance parameter ε>0 and oracle access to an arbitrary
function f :{0,1}n→{0,1} satisfies the following two conditions:

1. The tester accepts f if it is in P :
If f ∈Pn then Prob(Mf (n,ε)=1)≥ 2

3 .
2. The tester rejects f if it is far from P :

If dist(f,g)>ε for every g∈Pn , then Prob(Mf (n,ε)=1)≤ 1
3 .

4 Alternatively, one may consider a RAM model of computation, in which trivial ma-
nipulation of domain and range elements (e.g., reading/writing an element and comparing
elements) is performed at unit cost.
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Testing based on random examples [26]. In case the queries made by
the tester are uniformly and independently distributed in {0,1}n, we say
that it only uses examples. Indeed, a more appealing way of looking as such
a tester is as an ordinary algorithm (rather than an oracle machine), which
is given as input a sequence (x1,f(x1)),(x2,f(x2)), . . . where the xi’s are
uniformly and independently distributed in {0,1}n.

3. Proof of Theorem 2

In this section we show how every function f can be transformed into a
monotone function g. By definition of εM(f), the number of modification
performed in the transformation must be at least εM(f) ·2n. On the other
hand, we shall be able to upper bound the number of modifications by δM(f)·
n ·2n, thus obtaining the bound on δM(f) stated in Theorem 2.

Definition 2. For any i∈{1, . . . ,n}, we say that a function f is monotone in
dimension i, if for every α∈{0,1}i−1 and β∈{0,1}n−i, f(α0β)≤f(α1β).
For a set of indices T⊆{1, . . . ,n}, we say that f is monotone in dimensions
T, if for every i∈T, the function f is monotone in dimension i.

We next define a switch operator, Si that transforms any function f to
a function Si(f) that is monotone in dimension i.

Definition 3. For every i ∈ {1, . . . ,n}, the function Si(f) : {0,1}n →{0,1}
is defined as follows: For every α ∈ {0,1}i−1 and every β ∈ {0,1}n−i, if
f(α0β)> f(α1β) then Si(f)(α0β) = f(α1β), and Si(f)(α1β) = f(α0β).
Otherwise, Si(f) is defined as equal to f on the strings α0β and α1β.

Notation 4. Let

U def= {(x, y) : x and y differ on a single bit and x ≺ y}(2)

be the set of neighboring pairs, and let

∆(f) = {(x, y) : (x, y) ∈ U and f(x) > f(y)}(3)

be the set of violating (neighboring) pairs. Hence, |U| = 1
2 · 2n · n, and by

definition of δM(f), we have δM(f)= |∆(f)|
|U| . Let

Di(f)
def= |{x : Si(f)(x) 
= f(x)}|(4)

so that Di(f) is twice the number of pairs in ∆(f) that differ on the ith bit
(and

∑n
i=1Di(f)=2 · |∆(f)|).
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We show:

Lemma 7. For every f :{0,1}n→{0,1} and j∈ [n], we have:

1. If f is monotone in dimensions T⊆ [n] then Sj(f) is monotone in dimen-
sions T∪{j};

2. For every 1≤ i 
=j≤n, Dj(Si(f))≤Dj(f).

We note that the first item in the lemma is actually a special case of the
second item. However, for sake of the presentation we have chosen to state
and prove it separately.

We prove the lemma momentarily. First we show how Theorem 2 follows.
Let g = Sn(Sn−1(· · · (S1(f)) · · ·). By successive application of the first item
of Lemma 7, the function g is monotone, and hence dist(f,g)≥ εM(f). By
successive applications of the second item,

Di(Si−1(· · · (S1(f)) · · ·) ≤ Di(Si−2(· · · (S1(f)) · · ·) ≤ · · · ≤ Di(f)(5)

and so

dist(f, g) ≤ 2−n ·
n∑

i=1

Di(Si−1(· · · (S1(f)) · · ·) ≤ 2−n ·
n∑

i=1

Di(f).(6)

Therefore,
n∑

i=1

Di(f) ≥ dist(f, g) · 2n ≥ εM(f) · 2n(7)

On the other hand, by definition of Di(f),

n∑
i=1

Di(f) = 2 · |∆(f)| = 2 · δM(f) · |U| = δM(f) · 2n · n(8)

where U and ∆(f) were defined in Equations (2) and (3), respectively. The-
orem 2 follows by combining Equations (7) and (8).
Proof of Lemma 7. A key observation is that for every i 
= j, the effect
of Sj on the monotonicity of f in dimension i (resp., the effect of Si on the
value of Dj(·) ) can be analyzed by considering separately each restriction
of f at the other coordinates.
Item 1. Clearly, Sj(f) is monotone in dimension j. We show that Sj(f) is
monotone in any dimension i∈T. Fixing any i∈T, and assuming without
loss of generality, that i < j, we fix any α ∈ {0,1}i−1, β ∈ {0,1}j−i−1 and
γ ∈ {0,1}n−j , and consider the function f ′(στ) def= f(ασβ τ γ) where σ,τ ∈
{0,1}. Clearly f ′ is monotone in dimension 1 and we need to show that so
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is S2(f ′). In other words, consider the 2-by-2 zero-one matrix whose (σ,τ)-
entry is f ′(στ). Our claim thus amounts to saying that if one sorts the
rows of a 2-by-2 matrix whose columns are initially sorted then the columns
remain sorted. This is easily verified by a simple case analysis. For a more
general argument, concerning any d× d zero-one matrix, see the proof of
Lemma 8.
Item 2. Fixing i,j,α,β,γ and defining f ′ as above, here we need to show
that D2(S1(f ′)) ≤ D2(f ′). Again, we consider the 2-by-2 zero-one matrix
whose (σ,τ)-entry is f ′(στ). The current claim amounts to saying that for
any such matrix if we sort the columns then the number of unsorted rows
cannot increase. (Recall that D2 equals twice the number of unsorted rows.)
The claim is easily verified by a simple case analysis. For a more general
argument, concerning any d×2 zero-one matrix, see the proof of Lemma 8.
(We note that the claim is false for d×d zero-one matrices, starting at d≥4
as well as for 2-by-2 matrices with non-binary entries – see Appendix.)

4. Proofs of Propositions 3 and 4

Below we prove the propositions concerning the other relations between
εM(f) and δM(f) that were stated in the introduction.

Proposition 3. For every function f :{0,1}n→{0,1}, εM(f)≥δM(f)/2.

Proof. Let us fix f and consider the set ∆(f) of its violating pairs (as
defined in Equation (3)). In order to make f monotone, we must modify
the value of f on at least one string in each violating pair. Since each string
belongs to at most n violating pairs, the number of strings whose value must
be modified (i.e., εM(f) ·2n) is at least

|∆(f)|
n

=
δM(f) · |U|

n
=

δM(f) ·
(

1
2 · 2n · n

)
n

=
δM(f)
2

· 2n

(where U is as defined in Equation (2)), and the proposition follows.

Comment. For each string z, if f(z) = 0 then at most all pairs (x,z)∈U
are violating, and if f(z)=1, then at most all pairs (z,y)∈U are violating.
The number of former pairs equals the number of 1’s in z and the number
of latter pairs equals the number of 0’s in z. Since all but a small fraction of
strings have roughly n/2 1’s and n/2 0’s, the above bound can be improved
to yield εM(f)≥ (1−o(1)) ·δM(f), provided δM(f)≥2−cn for every constant
c<1.



312 GOLDREICH, GOLDWASSER, LEHMAN, RON, SAMORODNITSKY

Proposition 4. For every c<1, for any sufficiently large n, and for any α
such that 2−c·n≤α≤ 1

2 :

1. There exists a function f :{0,1}n→{0,1} such that α≤εM(f)≤2α and

δM(f) =
2
n
· εM(f).

2. There exists a function f :{0,1}n→{0,1} such that (1−o(1))·α≤εM(f)≤
2α and

δM(f) = (1± o(1)) · (1− c) · εM(f).

Proof. It will be convenient to view the Boolean Lattice as a directed layered
graph Gn. Namely, each string in {0,1}n corresponds to a vertex in Gn. For
every vertex y= y1 . . . yn, and for every i such that yi =1, there is an edge
directed from y to x = y1 . . . yi−10yi+1 . . . yn. Thus Gn is simply a directed
version of the hypercube graph. We refer to all vertices corresponding to
strings having exactly i 1’s as belonging to the ith layer of Gn, denoted
Li. By definition of the edges in the graph, there are only edges between
consecutive layers. For any function f :{0,1}n→{0,1}, we say that an edge
from y to x is violating with respect to f , if f(x)>f(y) (which implies that
(x,y)∈∆(f)). The fraction of violating edges (among all 1

2 ·2n ·n edges), is
by definition δM(f).
We start by proving both items for the case where α= 1

2 −O( 1√
n
).

Item 1. Let f = gn be defined on {0,1}n in the following way: gn(x)=1 if
x1 =0, and gn(x) = 0 if x1 =1 (thus gn is the “dictatorship” function). By
definition of gn, for every β∈{0,1}n−1, the edge (1β,0β) is a violating edge
with respect to gn, and there are no other violating edges (since for every
edge (y,x) such that x1 = y1, we have gn(x) = gn(y).) Since the number of
violating edges is 2n−1 (as there is a single edge for each β ∈ {0,1}n), and
the total number of edges is 1

2 ·2n ·n, we have δM(gn)= 2n−1

1
2
·2n·n=

1
n

On the other hand, we next show that εM(gn)= 1
2 . Clearly, εM≤ 1

2 as the
all 0 function is monotone and at distance 1

2 from gn. It remains to show
that we cannot do better. To this end, observe that the violating edges, of
which there are 2n−1, define a matching between C def= {y ∈ {0,1}n : y1 =1}
and C def= {x ∈ {0,1}n : x1 = 0} (where for every β ∈ {0,1}n−1, y = 1β is
matched with x = 0β). To make gn monotone, we must modify the value
of gn on at least one vertex in each matched pair, and since these pairs are
disjoint the claim follows.
Item 2. Let f = hn : {0,1}n → {0,1} be the (symmetric) function that
has value 0 on all vertices belonging to layers Li where i is even, and has
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value 1 on all vertices belonging to layers Li where i is odd (i.e., hn is
the parity function). Since all edges going from even layers to odd layers
are violating edges, δM(hn) = 1/2. We next show that εM(hn)≥ 1

2 −O( 1√
n
)

(where once again, εM(hn) ≤ 1
2 since hn is at distance at most 1/2 either

from the all-0 function or the all-1 function). Consider any pair of adjacent
layers such that the top layer is labeled 0 (so that all edges between the
two layers are violating edges). It can be shown (cf. [18, Chap. 2, Cor.
4]) using Hall’s Theorem, that for any such pair of adjacent layers, there
exists a perfect matching between the smallest among the two layers and
a subset of the larger layer. The number of unmatched vertices is hence∑
n/2�

i=1 ||L2i|−|L2i−1||+1 (where Ln+1
def= ∅, and the +1 is due to the all 0

string). This sum can be bounded by

2 + 2 ·

n/4�∑
i=1

||L2i| − |L2i−1||

= 2 + 2 ·

n/4�∑
i=1

(|L2i| − |L2i−1|) ≤ 2 + 2 · |L
n/2�| = O(2n/
√
n)

Thus, we have at least (1− o(1)) · 2n−1 disjoint violating edges. Since we
must modify the value of at least one end-point of each violating edge,
εM(hn)∈ [0.5−o(1),0.5] and the claim follows.

To generalize the above two constructions for smaller α we do the fol-
lowing. For each value of α we consider a subset S⊂ {0,1}n, such that all
strings in S have a certain number of leading 0’s, and the size of S is roughly
2α ·2n. Thus there is a 1-to-1 mapping between S and {0,1}n′

for a certain
n′, and S induces a subgraph of Gn that is isomorphic to Gn′ . For both case
we define f on S analogously to the way it was defined above on {0,1}n, and
let f be 1 everywhere else. We argue that the values of εM(f) and δM(f)
are determined by the value of f on S, and adapt the bounds we obtained
above. Details follow.
Item 1. Let n′=n−�log(1/(2α))�, and consider the set S of all strings whose
first n−n′ bits are set to 0 (thus forming a sub-cube of the n-dimensional
cube). The size of the set S is at least 2α · 2n and at most 4α · 2n. Clearly
the subgraph of Gn induced by vertices in S is isomorphic to Gn′ . For every
x=0n−n′

γ∈S (where γ∈{0,1}n′
), we let f(x)=gn′(γ), (where gn′ :{0,1}n′ →

{0,1} is as defined in the special case of Item 1 above), and for every x /∈S,
we let f(x)=1. Therefore, for every x∈S and y /∈S, either x≺y or x and y
are incomparable. This implies that the closest monotone functions differs
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from f only on S, and all violating edges (with respect to f) are between

vertices in S. Therefore, εM(f)= εM(hn′ )·2n′

2n = |S|/2
2n (which ranges between α

and 2α), and δM(f)= δM(hn′ )·2n′
n′/2

2nn/2 = |S|/2
2n·n/2 . So δM(f)= 2εM(f)

n , as desired.

Item 2. Here we let n′ = n− �log(1/(2α))�, and define S as in Item 1.
Thus, 2α · 2n ≤ |S| ≤ 4α · 2n. For every x= 0n−n′

γ ∈ S (where γ ∈ {0,1}n′
),

we let f(x) = hn′(γ), (where hn′ : {0,1}n′ → {0,1} is as defined in Item 2

above), and for every x /∈S, we let f(x)=1. Therefore, εM(f)=
εM(gn′ )·2n′

2n =
( 1
2
± 1√

n′ )·|S|
2n (which is greater than (1−o(1))α ·2n and less than 2α ·2n), and

δM(f)= δM(gn′ )·2n′
n′/2

2nn/2 = |S|·n′/4
2n·n/2 . We thus have δM(f)= (1±o(1))·n′

n ·εM(f). Since
n′>(1−c) ·n−3, the claim follows.

5. Other domain alphabets and ranges

As defined in the introduction, for finite sets Σ and Ξ and orders<Σ and <Ξ

on Σ and Ξ, respectively, we say that a function f :Σn→Ξ is monotone if
f(x)≤Ξ f(y) for every x≺Σ y, where x1 · · ·xn≺Σ y1 · · ·yn if xi≤Σ yi for every
i and xi<Σ yi for some i. In this subsection we discuss how our algorithm
generalizes when Σ and Ξ are not necessarily {0,1}. We first consider the
generalization to |Σ|> 2 while maintaining Ξ = {0,1}, and later generalize
to any Ξ.

5.1. General domain alphabets

Let f : Σn → {0,1}, where |Σ| = d. Without loss of generality, let Σ =
{1, . . . ,d}.5 A straightforward generalization of Algorithm 1 uniformly selects
a set of strings, and for each string x selected it uniformly select an index
j ∈ {1, . . . ,n}, and queries the function f on x and y, where y is obtained
from x by either incrementing or decrementing by one unit the value of
xj. However, as we shall see below, the number of strings that should be
selected in order to obtain 2/3 success probability (using this algorithm),
grows linearly with d. Instead, we show how a modification of the above
algorithm, in which the distribution on the pairs (x,y) is different from the

5 For sake of consistency with the binary case where Σ = {0,1}, we could let Σ =
{0, . . . ,d− 1}. However, this choice would make the presentation of our results in this
section somewhat more cumbersome and hence we have chosen to use Σ={1, . . . ,d}.
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above, yields an improved performance. Both algorithms are special cases of
the following algorithmic schema.
Algorithm 2. The algorithm utilizes a distribution p :Σ×Σ→ [0,1], and
depends on a function t. Without loss of generality, p(k,$)>0 implies k<$.
On input n,ε and oracle access to f :Σn→{0,1}, repeat the following steps
up to t(n,ε, |Σ|) times

1. Uniformly select i∈{1, . . .,n}, α∈Σi−1, and β∈Σn−i.
2. Select (k,$) according to the distribution p.
3. If f(αkβ) > f(α$β) (that is, a violation of monotonicity is detected),

then reject.

If all iterations were completed without rejecting then accept.

The above algorithm clearly generalizes the algorithm suggested at the
beginning of this section (where t(n,ε,d)=Θ(n ·d/ε) and the distribution p
is uniform over {(k,k+1) : 1≤ k <d}). However, as we show below, we can
select the distribution p so that t(n,ε,d) =Θ(nε · logd) will do. Yet a third
alternative (i.e., letting p be uniform over all pairs (k,$) with 1≤k<$≤d)
allows to have t(n,ε,d)=O(n/ε)2.

Clearly, Algorithm 2 always accepts a monotone function (regardless of
the distribution p in use). Our analysis thus focuses on the case the function
is not monotone.

5.1.1. Reducing the analysis to the case n=1. We reduce the analysis
of the performance of the above algorithm to its performance in the case
n=1. The key ingredient in this reduction is a generalization of Lemma 7.
As in the binary case, we describe operators by which any Boolean function
over Σn can be transformed into a monotone function. In particular we
generalize the switch operator (which is now a sort operator) to deal with
the case d>2.

Definition 5. For every i ∈ {1, . . . ,n}, the function Si(f) : Σn → {0,1}
is defined as follows: For every α ∈ Σi−1 and every β ∈ Σn−i, we let
Si(f)(α1β), . . . ,Si(f)(αdβ) be given the values of f(α1β), . . . ,f(αdβ), in
sorted order.

Clearly, similarly to the binary case, for each i, the function Si(f) is
monotone in dimension {i}, where the definition of being monotone in a set
of dimensions is as in the binary case.6 The definitions of U and ∆(f)⊆U

6 That is, for T ⊆ {1, . . . ,n}, we say that the function f : Σn → {0,1} is monotone in
dimensions T if for every i∈T, every α∈Σi−1,β∈Σn−i, and every k=1, . . .,d−1, it holds
that f(αkβ)≤f(α(k+1)β).
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of the binary case (cf., Equations (2) and (3)) may be extended in several
different ways. We use the following:

Notation 6. For every i∈ [n]def= {1, . . .,n} and every pair (k,$)∈Σ2 so that
k<$, we let

Ui,(k,�)
def= {(α k β , α $ β) : α ∈ Σi−1 , β ∈ Σn−i}(9)

∆i,(k,�)(f)
def= {(x, y) ∈ Ui,(k,�) : f(x) > f(y)}(10)

In the binary case (where here instead of Σ={0,1} we have Σ={1,2}),
U=

⋃n
i=1Ui,(1,2) and ∆(f)=

⋃n
i=1∆i,(1,2)(f). Furthermore, Di(f) as defined

in the binary case, equals twice |∆i,(1,2)(f)|.

Lemma 8. (Lemma 7 generalized): For every f :Σn→{0,1} and j∈ [n], we
have:

1. If f is monotone in dimensions T⊆ [n] then Sj(f) is monotone in dimen-
sions T∪{j};

2. For every i∈ [n]\{j}, and for every 1≤k<$≤d

|∆j,(k,�)(Si(f))| ≤ |∆j,(k,�)(f)|

Proof. As in the proof of Lemma 7, we may consider the function f re-
stricted at all dimensions but the two in question. Again, the proofs of the
two items boil down to corresponding claims about sorting matrices.
Item 1. Let i be some index in T, and assume without loss of generality
that i<j. Again, we fix any α∈Σi−1, β∈Σj−i−1 and γ∈Σn−j, and consider
the function f ′ : Σ2 → {0,1} defined by f ′(στ) def= f(ασβ τ γ). Again, f ′ is
monotone in dimension 1 and we need to show that so is S2(f ′) (as it is
obvious that S2(f ′) is monotone in dimension 2). Our claim thus amounts
to saying that if one sorts the rows of a d-by-d matrix whose columns are
sorted then the columns remain sorted (the matrix we consider has its (σ,τ)-
entry equal to f ′(στ)).

Let M denote a (d-by-d zero-one) matrix in which each column is sorted.
We observe that the number of 1’s in the rows of M is monotonically non-
decreasing (as each column contributes a unit to the 1-count of row k only
if it contributes a unit to the 1-count of row k+1). That is, if we let ok
denote the number of 1’s in the kth row then ok ≤ ok+1 for k=1, . . .,d−1.
Now suppose we sort each row of M resulting in a matrix M ′. Then the kth

row of M ′ is 0d−ok1ok , and it follows that the columns of M ′ remain sorted
(as the k+1st row of M ′ is 0d−ok+11ok+1 and ok≤ok+1).
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Item 2. Fixing i,j,α,β,γ and defining f ′ as above, here we need to show
that |∆2,(k,�)(S1(f ′))| ≤ |∆2,(k,�)(f ′)|. The current claim amounts to saying
that for any d× 2 zero-one matrix if we sort the (two) columns then the
number of unsorted rows cannot increase. Note that the claim refers only to
columns k and $ in the d-by-d matrix considered in Item 1, and that ∆2,(k,�)

is the set of unsorted rows.
Let Q denote a d-by-2 zero-one matrix in which each column is sorted.

Let o1 (resp., o2) denote the number of ones in the first (resp., second)
column of Q. Then, the number of unsorted rows in Q is r(Q) def= o1−o2 if
o1 > o2 and r(Q) def= 0 otherwise. Let Q′ be any matrix with o1 (resp., o2)
1’s in its first (resp., second) column. That is, Q′ is such that if we sort its
columns we obtain Q. Then we claim that the number of unsorted rows in
Q′ is at least r(Q). The claim is obvious in case r(Q)=0. In case r(Q)> 0
we consider the location of the o1 1’s in the first column of Q′. At most o2

of the corresponding entries in the second column are also 1 (as the total of
1’s in the second row is o2), and so the remaining rows (which are at least
o1−o2 in number) are unsorted.

With Lemma 8 at our disposal, we are ready to state and prove that the
analysis of Algorithm 2 (for any n) reduces to its analysis in the special case
n=1.

Lemma 9. Let A denote a single iteration of Algorithm 2, and f :Σn →
{0,1}. Then there exists functions fi,α,β :Σ→{0,1}, for i∈ [n], α∈{0,1}i−1

and β∈{0,1}n−i, so that the following holds

1. εM(f)≤2 ·∑iEα,β(εM(fi,α,β)), where the expectation is taken uniformly
over α∈{0,1}i−1 and β∈{0,1}n−i.

2. The probability that A rejects f is lower bounded by the expected value
of Prob[A rejects fi,α,β], where the expectation is taken uniformly over
i∈ [n], α∈{0,1}i−1 and β∈{0,1}n−i.

In fact, Theorem 1 follows easily from the above lemma, since in the
binary case Algorithm 2 collapses to Algorithm 1 (as there is only one possi-
ble distribution p – the one assigning all weight to the single admissible pair
(1,2)). Also, in the binary case, for any f ′ : {0,1}→{0,1}, algorithm A re-
jects with probability exactly 2εM(f ′). Thus, the lemma implies that in the
binary case, for any f :{0,1}n→{0,1}, algorithm A rejects with probability
at least

Ei,α,β(Prob[A rejects fi,α,β]) = Ei,α,β(2εM(fi,α,β))
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=
2
n
·
∑
i

Eα,β(εM(fi,α,β))

≥ 1
n
· εM(f)

The application of the above lemma in the non-binary case is less straightfor-
ward (as there the probability that A rejects f ′ :Σ→{0,1} is not necessarily
2εM(f ′)). Furthermore, algorithm A may be one of infinitely many possibil-
ities, depending on the infinitely many possible distributions p. But let us
first prove the lemma.
Proof. For i=1, . . .,n+1, we define fi

def= Si−1 · · ·S1(f). Thus, f1≡f , and by
Item 1 of Lemma 8, we have that fn+1 is monotone. It follows that

εM(f) ≤ dist(f, fn+1) ≤
n∑

i=1

dist(fi, fi+1)(11)

Next, for i = 1, . . .,n, α ∈ {0,1}i−1 and β ∈ {0,1}n−i, define the function
fi,α,β :Σ→{0,1}, by fi,α,β(x) = f(αxβ), for x∈Σ. Throughout the proof,∑

α,β refers to summing over all (α,β)’s in Σi−1×Σn−i, and Eα,β refers to
expectation over uniformly distributed (α,β)∈Σi−1×Σn−i. We claim that

dist(fi, fi+1) ≤ 2 · Eα,β(εM(fi,α,β))(12)

This inequality is proven (below) by observing that fi+1 is obtained from fi
by sorting, separately, the elements in each fi,α,β. (The factor of 2 is due to
the relationship between the distance of a vector to its sorted form and its
distance to monotone.) Thus,

dn · dist(fi, fi+1) =
∑
α,β

|{x ∈ Σ : fi(αxβ) 
= fi+1(αxβ)}|

=
∑
α,β

|{x ∈ Σ : fi,α,β(x) 
= fi+1,α,β(x)}|

=
∑
α,β

|{x ∈ Σ : fi,α,β(x) 
= Si(fi,α,β)(x)}|

≤
∑
α,β

2d · εM(fi,α,β)

where the inequality is justified as follows. Consider a vector v ∈ {0,1}d
(representing a generic fi,α,β), and let S(v) denote its sorted version. Then
S(v) = 0z1d−z, where z denotes the number of zeros in v. Thus, for some
e≥0, the vector v has e 1-entries within its prefix of length z and e 0-entries
in its suffix of length (d− z). So the number of locations on which v and
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S(v) disagree is exactly 2e. On the other hand, consider an arbitrary perfect
matching of the e 1-entries in the prefix and the e 0-entries in the suffix. To
make v monotone one must alter at least one entry in each matched pair;
thus, εM(v)≥e/d. Equation (12) follows.

Combining Equations (11) and (12), the first item of the lemma follows.
In order to prove the second item, we use the definition of algorithm A and
let χ(E)=1 if E holds and χ(E)=0 otherwise.

Prob[A rejects f ] =
1

n · dn−1

n∑
i=1

∑
α , β

Prob(k,�)∼p[f(α k β) > f(α $ β)]

=
1

n · dn−1

n∑
i=1

∑
α , β

∑
(k,�)

p(k, $) · χ[f(αk β) > f(α $ β)]

=
1

n · dn−1

n∑
i=1

∑
(k,�)

p(k, $) ·
∑
α , β

χ[f(αk β) > f(α $ β)]

=
1

n · dn−1

n∑
i=1

∑
(k,�)

p(k, $) · |∆i,(k,�)(f)|

Using Item 2 of Lemma 8, we have

|∆i,(k,�)(f)| ≥ |∆i,(k,�)(Si−1(f))|
· · ·

≥ |∆i,(k,�)(Si−1 · · · S1(f))|

Combining the above with the definition of fi, we have

Prob[A rejects f ] ≥ 1
n · dn−1

n∑
i=1

∑
(k,�)

p(k, $) · |∆i,(k,�)(fi)|

=
1

n · dn−1

n∑
i=1

∑
(k,�)

p(k, $) ·
∑
α , β

χ[fi(α k β) > fi(α $ β)]

=
1

n · dn−1

n∑
i=1

∑
α , β

∑
(k,�)

p(k, $) · χ[fi,α,β(k) > fi,α,β($)]

=
1

n · dn−1

n∑
i=1

∑
α , β

Prob[A rejects fi,α,β]

= Ei , α , β (Prob[A rejects fi,α,β])

and the lemma follows.
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5.1.2. Algorithms for the case n = 1. By the above reduction (i.e.,
Lemma 9), we may focus on designing algorithms for the case n= 1. The
design of such algorithms amounts to the design of a probability distribution
p :Σ2 → [0,1] (with support only on pairs (k,$) with k < $), and the spec-
ification of the number of times that the basic iteration of Algorithm 2 is
performed. We present three such algorithms, and analyze the performance
of a single iteration in them.

Algorithm 2.1. This algorithm uses the uniform distribution over pairs
(k,k + 1), and t(n,ε,d) = O(nd/ε). That is, it uses the distribution p1 :
Σ×Σ→ [0,1] defined by p1(k,k+1)=1/(d−1) for k=1, . . .,d−1.

Proposition 10. Let A1 denote a single iteration of Algorithm 2.1, and
f ′ :Σ→{0,1}. Then, the probability that A1 rejects f ′ is at least 2

d−1 ·εM(f ′).

The lower bound can be shown to be tight (by considering the function
f ′ defined by f ′(x)=1 if x<d/2 and f(x)=0 otherwise).
Proof. If εM(f ′)> 0 then there exists a k ∈ {1, . . .,d−1} so that f ′(k) = 1
and f(k+1)=0. In such a case A1 rejects with probability at least 1/(d−1).
On the other hand, εM(f ′)≤ 1/2, for every f ′ :Σ →{0,1} (by considering
the distance to either the all-zero or the all-one function).

Algorithm 2.2. This algorithm uses a distribution p2 :Σ×Σ→ [0,1] that
is uniform on a set P to be defined below, and t(n,ε,d)=O((n logd)/ε). The
set P consists of pairs (k,$), where 0<$−k≤2t and 2t is the largest power
of 2 that divides either k or $. That is, let power2(i)∈{0,1. . ., log2 i} denote
the largest power of 2 that divides i. Then,

P
def= {(k, $) ∈ Σ ×Σ : 0 < $− k ≤ 2max(power2(k),power2(�))}(13)

We note that selecting a pair uniformly in P can be approximated by se-
lecting a pair (a,b) ∈Σ×Σ (where either a < b or b < a, and power2(a)>
power2(b)) according to the following process. First, uniformly select i ∈
{1, . . . ,�logd�}. Next, uniformly select a∈Σ such that power2(a)= i. Finally
select b uniformly in {a− 2power2(a) +1,a+2power2(a) − 1} ∩ (Σ \ {a}). The
probability of selecting any pair differs by at most a factor of 2 from that
induced by the uniform distribution on P . It is not hard to verify that this
suffices for our purposes.

We also mention that an algorithm of similar performance was presented
and analyzed in [21, Sec. 2.1]. Loosely speaking, their algorithm selects a pair
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(k,$) by first picking k uniformly in {1, . . .,d−1}, next selects t uniformly in
{0,1, . . ., log2(d−k)}, and finally selects $ uniformly in {k+1, . . .,k+2t}∩Σ.7

Proposition 11. Let A2 denote a single iteration of Algorithm 2.2, and f ′ :
Σ→{0,1}. Then, the probability that A2 rejects f ′ is at least Ω( 1

logd )·εM(f ′).

Proof. We first show that |P |=O(d logd). This can be shown by charging
each pair (k,$)∈P to the element divisible by the larger power of 2 (i.e., to
k if power2(k)>power2($) and to $ otherwise), and noting that the charge
incurred on each i is at most 2 ·2power2(i). It follows that the total charge is
at most

∑d
i=1 2

power2(i)+1=
∑log2 d

j=0
d
2j ·2j+1=O(d logd).

We say that a pair (k,$)∈P (where k<$) is a violating pair (with respect
to f ′), if f ′(k)>f ′($). By definition, the probability that A2 rejects f ′ is the
ratio between the number of violating pairs in P (with respect to f ′), and
the size of P . Thus, it remains to show that the former is Ω(εM(f) ·d).

In the following argument it will be convenient to view the indices 1, . . . ,d
as vertices of a graph and the pairs in P as edges. Specifically, each pair
(k,$), where k < $ corresponds to a directed edge from k to $. We refer to
this graph as GP .
Claim 11.1. For every two vertices k and $ in GP , if k<$ then there is a
directed path of length at most 2 from k to $ in GP .
Proof of Claim. Let r=�logd�, and consider the binary strings of length
r representing k and $. Let k=(xr−1, . . . ,x0) and $=(yr−1, . . . ,y0). Let t be
the highest index such that xt=0 and yt=1. Note that xi=yi for t<i<r.
We claim that the vertex m=(xr−1, . . . ,xt+1,1,0, . . .0) is on a path of length
2 from k to $. This follows from the definition of P , since m is divided by
2t, while both m−k=2t−∑t−1

i=0 xi2i≤2t and $−m=
∑t−1

i=0 yi2
i<2t.

We now use the claim to provide a lower bound on the number of violating
pairs. Let z= |{k :f ′(k)=0}|. In what follows we think of f ′ as being a string
of length d: f(1) · · ·f(d). Then, the number of 1’s in the prefix of length z
of f ′ must equal the number of 0’s in its suffix of length (d− z). Let us
denote this number by a, and by definition of εM(f ′) we have εM(f ′)≤2a/d.
Consider a matching of the a 1’s in the prefix of length z of f ′ to the a 0’s
in its suffix of length (d− z). By the above claim, there is path of length
at most 2 in GP between every matched pair. Clearly, these paths (being
of length 2) are edge-disjoint. Since each path starts at a vertex of value 1
and ends at a vertex of value 0, it must contain an edge that corresponds

7 Observe that the two distributions are actually very different. In particular, while our
distribution puts no weight on pairs (k,�) such that both k and � are odd, the distribution
of [21] gives such pairs a total weight of almost 1/4.
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to a violating pair. Thus, we obtain a≥ εM(f ′)d/2 violating pairs, and the
proposition follows.

Algorithm 2.3. This algorithm uses the uniform distribution over all ad-
missible pairs, and t(n,ε,d) = min{O(nd/ε),O(n/ε)2}. That is, it uses the
distribution p3 :Σ×Σ→ [0,1] defined by p3(k,$)=2/((d−1)d) for 1≤k<$≤d.

Proposition 12. Let A3 denote a single iteration of Algorithm 2.3, and
f ′ :Σ→{0,1}. Then, the probability that A3 rejects f ′ is at least εM(f ′)2/2.

The lower bound is tight up to a constant factor: For any integer e <
d/2, consider the function f ′(x) = 0 if x ∈ {e+ 1, . . .,2e} and f ′(x) = 1
otherwise (then εM(f ′)=e/d and A3 rejects f ′ if and only if it selects a pair
in {1, . . .,e}×{e+1, . . .,2e}, which happens with probability e2/((d−1)d/2)≈
2εM(f ′)2). On the other hand, note that if εM(f ′)>0 then εM(f ′)≥1/d and
so the rejection probability is at least εM(f ′)/2d. This bound is also tight up
to a constant factor (e.g., consider f ′(x)=0 if x=2 and f(x)=1 otherwise,
then εM(f ′)=1/d and A3 rejects f ′ if and only if it selects the pair (1,2)).
Proof. As in the proof of Proposition 11, let z be the number of zeroes in f ′

and let 2e be the number of mismatches between f ′ and its sorted form. Then
εM(f ′)≤ 2e/d. On the other hand, considering the e 1-entries in the prefix
of length z of f ′ and the e 0-entries in its suffix of length (d−z), we lower
bound the rejection probability by e2/((d−1)d/2)>2(e/d)2 . Combining the
two, we conclude that A3 rejects f ′ with probability at least 2·(εM(f ′)/2)2.

On the semi-optimality of Algorithm 2.2. We call an algorithm, within
the framework of Algorithm 2, smooth if the number of repetitions (i.e.,
t(n,d,ε)) is linear in ε−1. Note that Algorithm 2.2 is smooth, whereas Algo-
rithm 2.3 is not. We claim that Algorithm 2.2 is optimal in its dependence on
d, among all smooth algorithms. The following argument is due to Michael
Krivelevich.

Proposition 13. Let p :Σ×Σ �→ [0,1] be a distribution with support only
on pairs (k,$) such that k< $, and ρ be such that for every non-monotone
f ′ :Σ �→{0,1} it holds that

Prob(k,�)∼p[f
′(k) > f ′($)] ≥ ρ · εM (f ′).

Then ρ≤ 2
log2 d

.

Proof. The key observation is that for any consecutive 2a indices, p has to
assign a probability mass of at least ρ ·a/d to pairs (k,$) where k is among
the lowest a indices and $ among the higher a such indices. This observation
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is proven as follows. Let L,H be the low and high parts of the interval in
question; that is, L={s+1, . . .,s+a} and H={s+a+1, . . .,s+2a}, for some
s∈{0, . . .,d−2a}. Consider the function f ′ defined by f ′(i)=1 if i∈L∪{s+
2a+1, . . .,d} and f ′(i)=0 otherwise. Then εM(f ′)=a/d. On the other hand,
the only pairs (k,$) with f ′(k)>f ′($), are those satisfying k∈L and $∈H.
Thus, by definition of ρ, it must hold that ρ≤Pr(k,�)∼p[k∈L & $∈H]/(a/d),
and the observation follows.

The rest of the argument is quite straightforward: Consider log2 d par-
titions of the interval [1,d], so that the ith partition is into consecutive
segments of length 2i. For each segment in the ith partition, probability p
assigns a probability mass of at least 2i−1ρ/d to pairs where one element is
in the low part of the segment and the other element is in the high part.
Since these segments are disjoint and their number is d/2i, it follows that
p assigns a probability mass of at least ρ/2 to pairs among halves of seg-
ments in the ith partition. These pairs are disjoint from pairs considered in
the other partitions and so we conclude that (log2 d)· ρ2 ≤1. The proposition
follows.

5.1.3. Conclusions for general n. Combining Lemma 9 with Proposi-
tions 11 and 12, we obtain.

Theorem 14. Algorithm 2.2 and Algorithm 2.3 constitute testers of mono-
tonicity for mappings Σn �→{0,1}.

– The query complexity of Algorithm 2.2 is O((n logd)/ε).
– The query complexity of Algorithm 2.3 is O(n/ε)2.

Both algorithms run in time O(q(n,d,ε) · n logd), where q(n,d,ε) is their
query complexity.

Proof. Both algorithms always accept monotone functions, and have com-
plexities as stated. For a = 2,3, let δa(f) denote the rejection probabil-
ity of a single iteration of Algorithm 2.a when given access to a function
f :Σn→{0,1}. Combining Lemma 9 and Proposition 11, we have

δ2(f) ≥ Ei,α,β(δ2(fi,α,β)) [By Part 2 of the lemma]
≥ Ei,α,β(εM(fi,α,β)/O(log d)) [By the proposition]
≥ εM(f)/O(log d)

2n [By Part 1 of the lemma]

which establishes the claim for Algorithm 2.2. Combining Lemma 9 and
Proposition 12, we have

δ3(f) ≥ Ei,α,β(δ3(fi,α,β)) [By Part 2 of the lemma]
≥ Ei,α,β(εM(fi,α,β)2/2) [By the proposition]

where Ei,α,β(εM(fi,α,β)) ≥ εM(f)/2n [By Part 1 of the lemma]
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So δ3(f) is lower bounded by the minimum of 1
N ·∑N

j=1x
2
j subject to 1

N ·∑N
j=1xj≥εM(f)/2n. The minimum is obtained when all xj’s are equal, and

this establishes the claim for Algorithm 2.3.

5.2. General ranges

Suppose we have an algorithm for testing monotonicity of functions f :Σn→
{0,1} (where Σ is not necessarily {0,1}). Further assume (as is the case for
all algorithms presented here), that the algorithm works by selecting pairs
of strings according to a particular distribution on pairs, and verifying that
monotonicity is not violated on these pairs. We show how to extend such
algorithms to functions f :Σn→Ξ while losing a factor of |Ξ|. We note that
an alternative proof for the case Σ = {0,1}, which is based on a previous
analysis of our testing algorithm [25], was given by Batu [10].

Without loss of generality, let Ξ={0, . . . , b}. The definition of εM extends
in the natural way to functions f :Σn → {0,1, . . ., b}. Given a function f :
Σn → {0,1, . . ., b}, we define Boolean functions fi : Σn → {0,1}, by letting
fi(x)

def= 1 if f(x)≥ i and fi(x)
def= 0 otherwise, for i=1, . . ., b. For any algorithm

A that tests monotonicity of Boolean functions as restricted above, and for
any Boolean function f , let δAM(f) be the probability that the algorithm
observes a violation when selecting a single pair according to the distribution
on pairs it defines. For f :Σn→{0,1, . . ., b}, let δAM(f) be defined analogously.

Lemma 15. Let f :Σn→{0, . . ., b}, and let fi’s be as defined above.

1. εM(f)≤∑b
i=1 εM(fi).

2. δAM(f)≥δAM(fi), for every i.

Combining the two items and using the relationship between δAM and εM
in the binary case (i.e., say, δAM(fi)≥εM(fi)/F , where F depends on |Σ| and
n), we get

δAM(f) ≥ max
i

{δAM(fi)} ≥ 1
b

b∑
i=1

δAM(fi) ≥
1
b

b∑
i=1

εM(fi)
F

≥ 1
b
· εM(f)

F

Hence, we may apply algorithm A (designed to test monotonicity of Boolean
functions over general domain alphabets), to test monotonicity of functions
to arbitrary range of size b+1; we only need to increase the number of pairs
that A selects by a multiplicative factor of b.
Proof. To prove Item 2, fix any i and consider the set of violating pairs with
respect to fi. Clearly each such pair is also a violating pair with respect to
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f (i.e., if x ≺ y and fi(x) > fi(y) then fi(x) = 1 whereas fi(y) = 0, and
so f(x) ≥ i > f(y)). Thus, any pair (x,y) that contributes to δAM(fi) also
contributes to δAM(f).

To prove Item 1, consider the Boolean monotone functions closest to the
fi’s. That is, for each i, let gi be a Boolean monotone function closest to fi.
Also, let g0 be the constant all-one function. Now, define g :Σn→{0,1, . . ., b}
so that g(x) def= i if i is the largest integer in {0,1, . . ., b} so that gi(x) = 1
(such i always exists as g0(x)=1).

First note that the distance of g from f is at most the sum of the distances
of the gi’s from the corresponding fi’s. This is the case since if g(x) 
=f(x)
then there must exists an i∈{1, . . ., b} so that gi(x) 
=fi(x) (since if gi(x)=
fi(x) for all i’s then g(x)=f(x) follows).

Finally, we show that g is monotone (and so εM(f)≤∑b
i=1 εM(fi) follows).

Suppose towards the contradiction that g(x) > g(y) for some x ≺ y. Let
i

def= g(x) and j
def= g(y)< i. Then by definition of g, we have gi(x) = 1 and

gi(y)=0, which contradicts the monotonicity of gi.

6. Testing whether a function is unate

By our definition of monotonicity, a function f is monotone if, for any string,
increasing any of its coordinates does not decrease the value of the function.
A more general notion is that of unate functions. Here we focus on Boolean
functions over {0,1}n. Consider the two permutations over {0,1}: (0,1) and
(1,0). Each of these permutations π induces a total order, denoted <π, over
{0,1}. The identity permutation id=(0,1) induces the standard order 0<id 1,
and the permutation id=(1,0) induces the order 1<id 0.

Definition 7. A function f : {0,1}n → {0,1} is unate if there exists a
sequence π = π1 . . .πn where each πi is one of the two permutations over
{0,1}, for which the following holds: For any two strings x= x1 · · ·xn, and
y=y1 · · ·yn, if for every i we have xi≤πi yi, then f(x)≤f(y). We say in such
a case the f is monotone with respect to π.

In particular, if a function is monotone with respect to the sequence
id, . . . , id, then we simply say that it is a monotone function, and if a function
is monotone with respect to some π, then it is unate. An alternative defini-
tion is that a function is unate if there exists a string a=a1, . . . ,an∈{0,1}n

such that the function f ′(x)def= f(x⊕a) is monotone.
Similarly to the algorithms presented for testing monotonicity, which

search for evidence to non-monotonicity, the testing algorithm for unateness
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tries to find evidence to non-unateness. However, here it does not suffice to
find a pair of strings x,y that differ on the ith bit such that x ≺ y while
f(x)>f(y). Instead we check whether for some index i and for each of the
two permutations π, there is a pair of strings, (x,y) that differ only the ith

bit, such that xi<π yi, while f(x)>f(y).
Algorithm 3 (Testing Unateness). On input n,ε and oracle access to
f :{0,1}n→{0,1}, do the following:

1. Uniformly select m=O(n1.5/ε) strings in {0,1}n, denoted x1, . . . ,xm, and
m indices in {1, . . . ,n}, denoted i1, . . . , im.

2. For each selected xj , obtain the values of f(xj) and f(yj), where yj

results from xj by flipping the ij-th bit.
3. If unateness is found to be violated then reject.

A violation occurs, if among the string-pairs {xj ,yj}, there exist two
pairs and an index i, such that in both pairs the strings differ on the
ith bit, but in one pair the value of the function increases when the bit
is flipped from 0 to 1, and in the other pair the value of the function
increases when the bit is flipped from 1 to 0.

If no contradiction to unateness is found then accept.

Theorem 16. Algorithm 3 is a testing algorithm for unateness. Further-
more, if the function is unate, then Algorithm 3 always accepts.

The furthermore clause is obvious, and so we focus on analyzing the
behavior of the algorithm on functions that are ε-far from unate.

6.1. Proof of Theorem 16

Our aim is to reduce the analysis of Algorithm 3 to Theorem 2. We shall
use the following notation.

Notation 8. For π=π1 · · ·πn (where each πi is a permutation over {0,1}),
let ≺π denote the partial order on strings with respect to π. Namely, x≺π y
if and only if for every index i, xi ≤πi yi. Let εM,π(f) denote the minimum
distance between f and any function g that is monotone with respect to π,
and let δM,π(f) denote the fraction of pairs x,y that differ on a single bit
such that x≺π y but f(x)>f(y).

For any f and π, consider the function fπ defined by fπ(x) =
f(π1(x1) · · ·πn(xn)). Then, εM,π(f) = εM(fπ) and δM,π(f) = δM(fπ). Hence,
as a corollary to Theorem 2, we have
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Corollary 17. For any f : {0,1}n→{0,1}, and for any sequence of permu-
tations π,

δM,π(f) ≥
εM,π(f)

n
.

Our next step is to link δM,π(f) to quantities that govern the behavior
of Algorithm 3. For each i ∈ {1, . . . ,n}, and permutation π over {0,1}, let
γi,π(f) denote the fraction, among all pairs of strings that differ on a single
bit, of the pairs x,y such that x and y differ only on the ith bit, xi <π yi,
and f(x) > f(y). In other words, γi,π(f) is the fraction of pairs that can
serve as evidence to f not being monotone with respect to any π=π1, . . .,πn

such that πi=π. Note that in case f is monotone with respect to some π,
then for every i, γi,πi(f) = 0. More generally, δM,π(f) =

∑n
i=1γi,πi(f) holds

for every π (since each edge contributing to δM,π(f) contributes to exactly
one γi,πi(f)).

The distance of f from the set of unate functions, denoted εU(f), is the
minimum distance of f to any unate function; that is, εU(f)=minπ(εM,π(f)).
We next link the γi,π(f)’s to εU(f).

Lemma 18.
∑n

i=1minπ{γi,π(f)}≥ εU(f)
n .

Proof. Let π = π1 . . .πn be defined as follows: πi = argminπ{γi,π(f)}. The
key observation is

δM,π(f) =
n∑

i=1

γi,πi(f) =
n∑

i=1

min
π

{γi,π(f)}

where the first equality holds for any π, and the second follows from the defi-
nition of this specific π. Using the above equality and invoking Corollary 17,
we have

n∑
i=1

min
π

{γi,π(f)} = δM,π(f) ≥
εM,π(f)

n
≥ εU(f)

n
.

For each i, let Γi,π(f) be the set of all pairs of strings x,y that differ only
on the ith bit, where xi<π yi, and f(x)>f(y). Lemma 18 gives us a lower
bound on the sum

∑
iminπ{|Γi,π|}. To prove Theorem 16, it suffices to show

that if we uniformly select Ω(n1.5/εU(f)) pairs of strings that differ on a
single bit, then with probability at least 2/3, for some i we shall obtain both
a pair belonging to Γi,id(f) and a pair belonging to Γi,id(f) (where id is the
permutation (1,0)). The above claim is derived from the following technical
lemma, which can be viewed as a generalization of the Birthday Paradox .
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Lemma 19. Let S1, . . . ,Sn,T1, . . . ,Tn be disjoint subsets of a universe X.

For each i, let pi
def= |Si|

|X| , and qi
def= |Ti|

|X| . Let ρ
def=
∑

imin(pi,qi) > 0. Then, for

some constant c, if we uniformly select 2c ·
√
n/ρ elements in X, then with

probability at least 2/3, for some i we shall obtain at least one element in
Si and one in Ti.

To derive the claim, let X=U (the set of unordered pairs of strings that
differ on a single bit), Si = Γi,id(f), and Ti = Γi,id(f). Then by Lemma 18,∑

imin(pi,qi) ≥ εU(f)/n. Now, using Lemma 19, the claim (and theorem)
follow. So it remains to prove Lemma 19.

Proof. Suppose, without loss of generality, that pi ≤ qi, for every i. As a
mental experiment, we partition the sample of elements into two parts of
equal size, c·√n/ρ. Let I be a random variable denoting the (set of) indices
of sets Si hit by the first part of the sample.
Claim 1. With probability at least 5/6 over the choice of the first part of
the sample, ∑

i∈I

pi ≥
ρ√
n

(14)

The lemma follows from Claim 1 since, conditioned on Equation (14)
holding, the probability that the second part of the sample does not include
any element from

⋃
i∈ITi is at most

(
1−

∑
i∈I

qi

)c·
√
n/ρ

≤
(
1− ρ√

n

)c·
√
n/ρ

<
1
6

where the last inequality holds for an appropriate choice of c. The remainder
of the proof of the lemma is thus dedicated to proving Claim 1.
Proof of Claim 1. Assume without loss of generality that the sets Si are
ordered according to size. Let S1, . . . ,Sk be all sets with probability weight at
least ρ/2n each (i.e., p1≥ . . .≥pk≥ρ/2n). Then

∑n
i=k+1 pi<

∑n
i=k+1(ρ/2n)<

ρ/2. Since by definition, ρ=
∑

imin(pi,qi), and we have assumed that pi≤qi
for all i, we have that

∑k
i=1 pi = ρ−∑n

i=k+1 pi > ρ/2. In other words, the

probability that a uniformly selected element from X hits S̄ def=
⋃k

i=1Si is
greater than ρ/2. Thus, if we uniformly select c ·√n/ρ elements in X then
we expect to hit S̄ more than c

√
n/2 times. By a (multiplicative) Chernoff

bound, for an appropriate choice of the constant c, the probability that a
uniformly selected sample of size c·√n/ρ contains less that 4·√n elements in
S̄ is less than 1/12. In what follows we assume that the number of elements
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from S̄ that are selected in the first part of the sample is in fact at least
4·
√
n (and later account for the probability that this event does not occur).

Let I′ def= I∩{1, . . . ,k}. That is, I′ is a random variable denoting the (set
of) indices of sets Si, i∈{1, . . . ,k} that are hit by the first part of the sample.
In particular, I ′⊆I (where I is as defined at the beginning of this proof).

Claim 2. Conditioned on the first sample containing at least 4·
√
n elements

from S̄, with probability at least 11/12 it holds that
∑

i∈I′ pi≥ ρ√
n
.

Let E1 denote the event that the first sample contains at least 4 · √n
elements from S̄, and let E2 denote the event that

∑
i∈I′ pi≥ ρ√

n
. By Claim 2

and the preceding discussion, the probability that Equation 14 holds is at
least Pr[E1] ·Pr[E2|E1]≥ (11/12)2 >5/6, proving Claim 1. It hence remains
to prove Claim 2.

Proof of Claim 2. Recall that the sample is uniformly distributed in X.
Thus, for each sample element, conditioned on it belonging to S̄ ⊂ X, the
element is uniformly distributed in S̄. Hence, we may lower bound the prob-
ability of the above event (i.e., E2), when selecting 4

√
n elements uniformly

and independently in S̄. Consider the choice of the jth element from S̄, and
let I′j−1 denote the set of indices of sets hit by the the first j−1 elements
selected in S̄. Going for j=1, . . .,4

√
n, we consider two cases.

1. In case
∑

i∈I′j−1
pi≥

2·
∑k

i=1
pi√

n
, we are done since

∑k
i=1 pi≥ ρ

2 .

2. Otherwise (i.e.,
∑

i∈I′j−1
pi < 2

∑k
i=1 pi/

√
n), the probability that the jth

element belongs to I′\I′j−1 (i.e., it hits a set in {S1, . . . ,Sk} that was not
yet hit), is at least 1−(2/√n)·∑k

i=1 pi. But
∑k

i=1 pi≤1/2 (as pi≤qi for all
i and

∑n
i=1 pi+

∑n
i=1 qi≤1), and so this probability is at least 1−1/

√
n,

which is at least 2/3 for n≥9. Since each such element carries a pi weight
of at least ρ/2n, it follows that with probability at least 2/3 the sum of
pi’s has increased by at least ρ/2n.

Observe that if we toss 4
√
n (or more) coins with bias 2/3 towards heads,

then with probability at least 11/12 (provided n is big enough) we’ll get
at least 2

√
n heads. In our case, the number of coins tossed corresponds to

the number of elements that are selected in S̄, and the heads correspond to
getting a new element from S̄. Thus, if Case 2 occurs 4

√
n (or more) times

then with probability at least 11/12 the sum
∑

i∈I′ pi is at least 2
√
n·(ρ/2n)=

ρ/2, and the claim follows. (Claim 2, Claim 1, and Lemma 19.)
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7. Testing based on random examples

In this section we prove Theorems 5 and 6: establishing a lower bound on the
sample complexity of such testers and a matching algorithm, respectively.
For convenience, we first restate the theorems.

Theorem 5. For any ε=O(n−3/2), any tester for monotonicity that only
utilizes random examples must use at least Ω(

√
2n/ε) such examples.

Theorem 6. There exists a tester for monotonicity that only utilizes ran-
dom examples and uses at most O(

√
2n/ε) examples, provided ε>n2 ·2−n.

Furthermore, the algorithm runs in time poly(n) ·
√
2n/ε.

7.1. A lower bound on sample complexity

As in the proof of Proposition 4, we view the Boolean Lattice as a directed
layered graph Gn, where the ith layer is denoted Li. Consider the vertices in
Lk and Lk−1, where k=�(n+1)/2�. We know that |Lk|, |Lk−1|=Ω(n−1/2·2n).
It can be shown (cf. [18, Chap. 2, Cor. 4]) using Hall’s Theorem, that for
any such pair of adjacent layers, there exists a perfect matching between
the smallest among the two layers and a subset of the larger layer. Let
M={(vi,ui) : i=1, . . ., t}⊆Lk−1×Lk denote this matching, where t= |Lk−1|.
Using a greedy approach, we find a large matching M′⊂M, M′={(vij ,uij )}
such that there are no edges in Gn between pairs vij and uik such that ij 
= ik.
Since each edge (vi,ui)∈M′ “rules out” at most (k−1)+(n−(k−1)−1)<n
other edges in M (i.e., an edge (vj ,uj) is ruled out if either (vj ,ui) or (vi,uj)
is an edge in Gn), we can obtain |M′|≥ t

n=Ω(n−3/2·2n). By possibly dropping
edges from M′ we can obtain a matching M′′ so that |M′′| is even and of size
2ε·2n (recall that ε=O(n−3/2)). Using M′′ we define two families of functions.
A function in each of the two families is determined by a partition of M′′

into two sets, A and B, of equal size.

1. A function f in the first family is defined as follows
– For every (v,u)∈A, define f(v)=1 and f(u)=0.
– For every (v,u)∈B, define f(v)=0 and f(u)=1.
– For x with w(x)≥k, for which f has not been defined, define f(x)=1.
– For x with w(x) ≤ k− 1, for which f has not been defined, define
f(x)=0.

2. A function f in the second family is defined as follows
– For every (v,u)∈A, define f(v)=1 and f(u)=1.
– For every (v,u)∈B, define f(v)=0 and f(u)=0.
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– For x’s on which f has not been defined, define f(x) as in the first
family.

It is easy to see that every function in the second family is monotone, whereas
for every function f in the first family εM(f) = |B|/2n = ε. Theorem 5 is
established by showing that an algorithm which obtains o(

√
|B|) random

examples cannot distinguish a function uniformly selected in the first family
(which needs to be rejected with probability at least 2/3) from a function
uniformly selected in the second family (which needs to be accepted with
probability at least 2/3). That is, we show that the statistical distance be-
tween two such samples is too small.

Claim 20. The statistical difference between the distributions induced by

the following two random processes is bounded above by
(m

2

)
· |M

′′|
22n . The first

process (resp., second process) is define as follows

– Uniformly select a function f in the first (resp., second) family.
– Uniformly and independently select m strings, x1, . . .,xm, in {0,1}n.
– Output (x1,f(x1)), . . .,(xm,f(xm)).

Proof. The randomness in both processes amounts to the choice of B (uni-
form among all (|M′′|/2)-subsets of M′′) and the uniform choice of the se-
quence of xi’s. The processes differ only in the labelings of the xi’s that are
matched by M′′, yet for u (resp., v) so that (u,v)∈M′′ the label of u (resp.,
v) is uniformly distributed in both processes. The statistical difference is
due merely to the case in which for some i,j the pair (xi,xj) resides in M′′.
The probability of this event is bounded by

(m
2

)
times the probability that a

specific pair (xi,xj) resides in M′′. The latter probability equals |M′′|
2n ·2−n.

Conclusion. By Claim 20, m<2n/
√
3|M′′| implies that the statistical dif-

ference between these processes is less than m2

2 · |M′′|
22n < 1/6 and thus an

algorithm utilizing m queries will fail to work for the parameter ε= |B|/2n.
Theorem 5 follows.

7.2. A matching algorithm

The algorithm consists of merely emulating Algorithm 1. That is, the algo-
rithm is given m

def= O(
√
2n/ε) uniformly selected examples and tries to find

a violating pair as in Step 3 of Algorithm 1. We assume ε>n2 ·2−n, or else
the algorithm sets m=O(n ·2n).
Algorithm 4. Input n,ε and (x1,f(x1)), . . .,(xm,f(xm)).
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1. Place all (xj ,f(xj))’s on a heap arranged according to any ordering on
{0,1}n.

2. For j = 1, . . .,m and i= 1, . . .,n, try to retrieve from the heap the value
y

def= xj⊕0i−110n−i. If successful then consider the values xj,y,f(xj),f(y)
and in case they demonstrate that f is not monotone then reject.

If all iterations were completed without rejecting then accept.
Analysis. Clearly, Algorithm 4 always accepts a monotone function, and
can be implemented in time poly(n)·m. Using a Birthday Paradox argument,
we show that for the above choice of m = O(

√
2n/ε), Algorithm 4 indeed

rejects ε-far from monotone functions with high probability. We merely need
to show the following.

Lemma 21. There exists a constant c so that the following holds. If m≥
c ·
√
2n/εM(f) and if the xi’s are uniformly and independently selected in

{0,1}n then Algorithm 4 rejects the function f with probability at least
2/3.

Proof. We consider the sets U and ∆(f), as defined in the proof of The-
orem 2 (see Equation (2) and Equation (3), respectively). By Theorem 2,
we have |∆(f)| ≥ εM(f)

n · |U|= εM(f) · 2n−1. Our goal is to lower bound the
probability that the m-sample contains a pair in ∆(f). Towards this end,
we partition the sample into two equal parts, denoted x(1), . . .,x(m/2) and
y(1), . . .,y(m/2), For i,j ∈ {1, . . .,m/2}, we define a 0-1 random variable ζi,j
so that ζi,j =1 if (x(i),y(j))∈∆(f) and ζi,j =0 otherwise. Clearly, the ζi,j’s
are identically distributed and we are interested in the probability that at
least one of them equals 1 (equiv., their sum is positive). Note that the ζi,j’s
are dependent random variables, but they are almost pairwise independent
as shown below. We first show that the expected value of their sum is at
least c2/8. Below, X and Y are independent random variables uniformly
distributed over {0,1}n.

µ
def= E[ζi,j] = PrX,Y [(X,Y ) ∈ ∆(f)](15)

=
∑

(x,y)∈∆(f)

PrX,Y [X = x&Y = y]

= |∆(f)| ·
(
2−n)2 ≥ εM(f) · 2−(n+1)

Thus, E[
∑

i,j ζi,j]≥ (m/2)2 ·εM(f)2−(n+1) ≥ c2/8, which for sufficiently large
value of the constant c yields a big constant. It thus come at little surprise
that the probability that

∑
i,j ζi,j=0 is very small. Details follows.
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Let ζi,j
def= ζi,j−µ. Using Chebishev’s Inequality we have

Pr[
∑
i,j

ζi,j = 0] ≤ Pr



∣∣∣∣∣∣
∑
i,j

ζi,j

∣∣∣∣∣∣ ≥ (m/2)2 · µ




≤
E[(
∑

i,j ζi,j)
2]

(m/2)4 · µ2

≤
∑

i,j E[ζ
2
i,j]

(m/2)4 · µ2
+ 2 ·

∑
i,j,k s.t. j �=k E[ζi,jζi,k]

(m/2)4 · µ2

using E[ζi,jζi′,j′ ]=E[ζi,j] ·E[ζi′,j′]= 0, for every 4-tuple satisfying i 
= i′ and
j 
= j′. (The factor of 2 compensates for the symmetric terms E[ζi,jζk,j] s.t.

i 
=k.) Since E[ζ2
i,j]=E[ζ2

i,j]−µ2, the first term above is bounded by∑
i,j E[ζ

2
i,j]

(m/2)4 · µ2
=
∑

i,j E[ζi,j]
(m/2)4 · µ2

=
1

(m/2)2 · µ ≤ 8
c2

where the first equality follows from the fact that ζi,j is a zero-one random
variable. To bound the second term, we let X, Y and Z be independent
random variables uniformly distributed over {0,1}n, and obtain∑

i,j,k s.t. j �=k

E[ζi,jζi,k] ≤
∑

i,j,k s.t. j �=k

E[ζi,jζi,k]

≤ (m/2)3 · PrX,Y,Z [(X,Y ) ∈ ∆(f)&(X,Z) ∈ ∆(f)]

= (m/2)3 · |{(x, y, z) : (x, y) ∈ ∆(f)&(x, z) ∈ ∆(f)}| ·
(
2−n)3

≤ (m/2)3 · |{(x, y, z) : (x, y) ∈ ∆(f)&(x, z) ∈ U}| ·
(
2−n)3

≤ (m/2)3 · (|∆(f)| · n) · 2−3n

= (m/2)3 · µ · n · 2−n

Combining all the above, we get

Pr[
∑
i,j

ζi,j = 0] ≤ 8
c2

+ 2 · (m/2)3 · µ · n · 2−n

(m/2)4µ2

≤ 8
c2

+ 8 · n · 2−n

c
√
2n/ε · ε2−n

Using ε≥n22−n, the second term is bounded by 8/c, and the lemma follows
(for c≥25).
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[29] J. Håstad: Testing of the long code and hardness for clique, in: Proceedings of
STOC96, 11–19, 1996.
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Appendix

Here we give counterexamples to generalizations of Item 2 in Lemma 7.
Recall that this item asserts that for every 2× 2 zero-one valued matrix,
if the columns of the matrix are sorted, then the number of modification
required to sort the rows (i.e., twice the number of unsorted rows), cannot
increase. Here we show that this claim does not generalize neither to d×d
zero-one matrices for d≥4 nor to 2×2 matrices over Σ such that |Σ|≥3.

Example 1: a 2-by-4 zero-one matrix. Consider the matrix

(
0 0 1 1
1 0 1 0

)

The first row is sorted, and in order to sort the second row two modifications
are necessary and sufficient. However, after sorting the columns we get:

(
0 0 1 0
1 0 1 1

)

and now the first row requires two modifications, and so does the second
row. Hence, the total number of modification required in order to sort the
rows has increased following the sorting of the columns.

Example 2: a 2-by-2 3-valued matrix. Consider the matrix:

(
3 1
2 2

)

The first row requires two modifications, and the second row is sorted. After
sorting the columns we get: (

2 1
3 2

)

and now both rows require two modifications.
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