CMPS290A: Sublinear algorithms for graphsSpring 2017Lecture 6: 4/27/2017Lecturer: C. SeshadhriLecturer: C. SeshadhriScribe: Ahmed Elshaarany

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 General Monotonicity Testers Through Ramsey Theory

Theorem 6.1 Any monotonicity tester for function $f : [n] \to \mathbb{N}$ requires $\Omega(\log(n))$ queires.

Definition 6.2 In [F02], a (t,ε,δ) -randomized tester is a monotonicity tester with the proximity parameter ε that:

- 1. makes $\leq t$ queries on an input function
- 2. makes $\leq \delta$ error on any input

Theorem 6.3 In [F02], If \exists a (t,ε,δ) -tester, there exists a $(t,\varepsilon,2\delta)$ comparison-based tester.

Theorem 6.4 In [R30], given any finite coloring of \mathbb{N}^s , there exists an infinite monochromatic set where:

- Finite coloring: $\chi : \mathbb{N}^s \to \{1, 2, ..., c\}$
- Monochromatic set: $M \subseteq \mathbb{N}$ s.t. $\chi|_{M^s}$ is constant
- N-Natural numbers
- $\forall s \in \mathbb{N}, \mathbb{N}^{(s)}$: All subsets of \mathbb{N} with cardinality s, where $s \in \mathbb{N}$

Theorem 6.5 In section 2 of [CS14], a theorem states that if we fix $t \in \mathbb{N}$, given a collection of finite coloring for $\mathbb{N}^{(2)}, \mathbb{N}^{(3)}, ..., \mathbb{N}^{(t)}, \exists$ an infinite monochromatic set w.r.t. all these colorings.

We can define a monotonicity tester by considering a function P, and for every sequence $x_1, x_2, ..., x_s$ in $[n](s \leq t)$ and x_{s+1} in [n], then $P_{x_1, x_2, ..., x_s}^{x_s+1}$: $\mathbb{N}^{(s)} \to [0, 1]$ s.t. $\forall T \in \mathbb{N}^{(s)}$:

 $\sum_{x \in [n]} P^x_{x_1, x_2, \dots, x_s}(T) + P^{ACC}_{x_1, x_2, \dots, x_s}(T) + P^{REJ}_{x_1, x_2, \dots, x_s}(T) = 1,$ where:

- $P_{x_1,x_2,\ldots,x_s}^{ACC} \colon \mathbb{N}^{(s)} \to [0,1]$
- $P^{REJ}_{x_1,x_2,...,x_s} \colon \mathbb{N}^{(s)} \to [0,1]$
- T: Values in query order

It is worth mentioning that the above equation specifies that the next query is a probability distribution.

Now, consider the function $q_{x_1,x_2,\ldots,x_s,\sigma}^{x_{s+1}}$: $\mathbb{N}^{(s)} \to [0,1]$, where σ : permutations of $[s] \in S_s$, then:

 $q_{x_1,x_2,...,x_s,\sigma}^{x_{s+1}}(A) = P_{x_1,x_2,...,x_s}^{x_{s+1}}(\sigma(a_1),\sigma(a_2),...,\sigma(a_s))$, where $A = a_1 < a_2 < a_3 < ... < a_s$ are the values stored in sorted order. Therefore, in this case: $T \equiv (A,\sigma)$

To illustrate more, assume that the tester has queried: $x_1, x_2, ..., x_s$ and gets back the values: $v_1, v_2, ..., v_s$, then we get $P^s_{x_1, x_2, ..., x_s}(v_1, v_2, ..., v_s)$. In q-world, we first sort $(v_1, v_2, ..., v_s)$ to (σ, A) and therefore $v_i = \sigma(a_i)$

Claim 6.6 Tester is comparison-based \equiv All q functions are constant

Definition 6.7 A tester is discrete if $\exists K \in \mathbb{N}$ s.t. all q-values (p-values) are multiples of $\frac{1}{K}$

Claim 6.8 If \exists a (t,ε,δ) -tester, there exists a $t,\varepsilon,2\delta$)-discrete tester.

Lemma 6.9 If \exists a $(t,\varepsilon,2\delta)$ -discrete tester, then there exists a $t,\varepsilon,2\delta$)-comparison-based tester.

Proof: Define the following colorings of $\mathbb{N}^{(s)}$:

- $\chi: \mathbb{N}^{(s)} \to \{0, \frac{1}{K}, \frac{2}{K}, \frac{3}{K}, ..., 1\}^{s!(n+2)n^s}$
- $\chi(A) = (q_{x_1,x_2,...,x_s,\sigma}^{x_{s+1}}(A) \forall x_1, x_2, ..., x_s, \sigma, x_{s+1})$

Then, \exists an infinite set $M \subseteq \mathbb{N}$ (according to Ramsey) that is monochromatic. Fix any s, and $A_1, A_2 \in M^s$, then:

- $\chi(A_1) = (q_{x_1,x_2,...,x_s,\sigma}^{x_{s+1}}(A_1) \forall x_1, x_2, ..., x_s, \sigma, x_{s+1})$
- $\chi(A_2) = (q_{x_1,x_2,...,x_s,\sigma}^{x_{s+1}}(A_2) \forall x_1, x_2, ..., x_s, \sigma, x_{s+1})$

 \exists infinite $M \subseteq \mathbb{N}$ s.t. $\forall f : [n] \to M$, the tester \mathscr{T} is comparison-based.

Let $M = \{m_1, m_2, ...\}$

Define bijection: $\phi: \mathbb{N} \to M$, then $\phi(i) = m_i$

Given any f, $\phi \circ f$ has the same distance of monotonicity as f. Then the final tester \mathscr{C} invokes \mathscr{T} on $\phi \circ f$ and \mathscr{C} is comparison-based. It is worth mentioning that $\phi \circ f$ has range M.

If the range is finite or small (i.e. $f : [n] \to [r]$), [Pallavoor-Rakhodmikova-Varma17] give an $bigO(\frac{\log(r)}{\varepsilon})$ tester. Also, [Blais-Rakhodmikova-Yaroslartsev14] Non-adaptive testers require $\Omega(\log(r))$ queries.

6.2 Proof of Ramsey's Theory

Theorem 6.10 Given finite coloring of $\mathbb{N}^{(\sim)}$, \exists infinite monochromatic subset of \mathbb{N} .

Proof: for s = 2, let a_0 be the minimum of N. Pick the infinite color class, say color is c_0 , and call that set S_1 .

In S_1 , let infinite color class gave color c_1 , call that set S_2 .

Hence, some color c appears infinitely in $c_0, c_1, ...,$ hence that color class in monochromatic.

Given infinite set S_i :

- 1. Let a_i be the minimum of S_i
- 2. There exists infinite set $S_{i+1} \subseteq S_i$ and color c_i s.t. $\forall s \in S_i, \chi((a, s)) = c_i$. Therefore by induction on s, we can continue the rest of the proof.

References

- [F02] E. FISCHER, On the strength of comparisons in property testing, Information and Computation Journal 189 (2004), pp. 107–116.
- [R30] FP. RAMSEY, On a problem of formal logic, *Classic Papers in Combinatorics* (2009), pp. 1–24.
- [PRV17] R. PALLAVOOR, S. RASKHODNIKOVA and N. VARMA, Parameterized Property Testing of Functions, 8th Innovations in Theoretical Computer Science, ITCS 17 (2017), pp. 9–11.
 - [CS14] D. CHAKRABARTY and C. SESHADHRI, An Optimal Lower Bound for Monotonicity Testing over Hypergrids, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (2013), pp. 425–435.