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In this paper we develop a framework for the redesign of computer-controlled,
closed-loop, mechanical systems for improved dynamic performance. A central
notion which underlies the redesign framework is that, in order to achieve the best
possible performance from a constrained closed-loop system, the plant and controller
should be designed simultaneously. The framework is presented as the formulation
and solution of a progression of optimization problems which establish the limits
of performance of the dynamic system under various conditions of interest, thereby
enabling the engineer to systematically establish the various redesign possibilities.
Using a second order linear dvnamic system and a nonlinear controller as an example,
we demonstrate the application of the framework and substantiate the idea that in
order to achieve the best possible performance from a constrained closed-loop
system, the plant and controller should be redesigned simultaneously. We then show
how the redesign framework can be used to select the best control strategy for a
robotic manipulator from a dynamic performance standpoint. Finally, in order to
demonstrate that the redesign framework yields solutions which the engineer can
implement with confidence, we present the experimental verification of the numerical

solution of a manipulator redesign optimization problem.

1 Introduction

In order to motivate the problems and issues addressed in
this paper, consider the following design context. Given an
existing feedback-controlled dvnamic system which consists of
a nominal plant structure (or configuration), a nominal set of
plant parameters which characterize the plant structure, a nom-
inal feedback controller structure and a nominal set of con-
troller parameters which characterize the controller structure,
the engineer would like to redesign this controlled dynamic
system in order to improve its dynamic performance.

To improve the performance of the given feedback-con-
trolled dynamic system, the engineer can redesign the system,
in order of preference, in the following ways:

(1) The engineer can redesign the controller by either se-
lecting new controller parameters or by choosing a dif-
ferent controller structure. Since the systems of interest
to us are computer controlled, redesigning the con-
troller does not involve hardware changes, making this
the most desirable action.

(2) The engineer may change a plant parameter (or group
of parameters) so that, in effect, some components are
re-sized. In general, since the plant has changed, the
controller will also need to be modified. Changing the
plant parameters is usually more difficult than changing
the controller (since new components must either be
bought or made) but is not as serious as changing the
plant structure (and hence changing the entire plant).
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(3) The engineer changes the plant structure. This is the
least preferable and most costly change.

Because the dynamic performance of a closed-loop system is
due, through constraints, to both the plant and controller, it
is often difficult to determine which of the above changes to
make. There is therefore a need for a systematic framework
to help the engineer make the correct set of design and/or
redesign decisions. Such a redesign framework is developed in

Section 3.

Successful redesign of the existing controlled dynamic system
depends crucially on a thorough understanding of the per-
formance capabilities of the dynamic system and the resolution
of performance related issues such as the following:

(1) the determination of the limits of performance of the
controlled dynamic system under various conditions of
interest.

(2) for a given controller structure, the determination of
the (best) combination of plant parameters and con-
troller parameters that optimizes dynamic performance
under given constraints.

(3) from a given set of competing controller structures, the
determination of the best controller structure from a
dynamic performance standpoint.

While a large part of control research deals with the formu-
lation, implementation, and robustness of feedback controller
structures (or strategies), there is a relatively miniscule amount
of work which addresses the resolution of the above important
issues which arise in the design of feedback controlled dynamic
systems for performance. The aforementioned redesign frame-
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work will allow the engineer to systematically and quantita-
tively understand the performance capabilities of the controlled
dynamic system, enable him (or her) to resolve performance-
related issues such as those mentioned above, and, as a con-
sequence, redesign the existing plant and controller to achieve
improved dynamic performance.

The dynamic performance of a feedback-controlled dynamic
system is limited by plant design, controller design, and system
constraints. Often, improved system performance can be ob-
tained if the plant and controiler are redesigned simultaneously
under a given set of system constraints. Currently, no unified
framework exists for simultaneous plant-controller design
which takes important system constraints into account. For
example, most controller design methods ignore actuator con-
straints in the design process, requiring ad-hoc redesign if
numerical simulations of the closed-loop system yield con-
straint violations.

The framework presented in Section 3 yields plant and con-
troller design parameters which meet performance require-
ments but do not violate constraints. The framework indicates
possible redesigns of a nominal design based on the solution
of a series of optimization problems and is applicable to com-
puter-controlled, closed-loop, multibody mechanical systems.
Since constraints are taken into account a priori as part of the
problem formulation, the resulting redesign solutions can be
implemented with confidence. (The experimental verification
in Section 5 validates the last statement.) An extremely im-
portant class of constraints, addressed in the present paper,
are the bounds on the actuator efforts.

In some respects, the framework can be viewed as an ex-
tension of optimal control theory. In fact, one of the opti-
mization problems we solve is the optimal control problem.
However, optimal control theory [1-2] is concerned with find-
ing the best control strategy for a fixed plant while our method
focuses on optimizing controller design and plant design si-
multaneously, Also, the application of optimal control theory
often results in a control strategy which is open-loop while we
concentrate exclusively on utilizing closed-loop controllers,
reaping the well-known benefits of feedback control.

Other researchers have used optimization as an aid in the
design of closed-loop controllers. Boyd [3] has applied fac-
torization (4] to finding the optimal feedback controller by
solving a convex programming problem. As in our method,
Boyd minimizes dynamic performance measures and explicitly
levies constraints. However, Boyd’s methods are applicable
only to linear systems with linear controllers and fixed plants
while our method may be applied to nonlinear system and
plants with free parameters. Optimal closed-loop controllers
may also be designed using H., control theory [5-6], but only
for linear systems with fixed plants.

Numerous researchers (see, for instance, [7]) have applied
optimization to the design of dynamic systems, some recent
applications being [8-9]. However, most concentrate on op-
timizing plant design and ignore the role of the controller in
determining closed-loop response. Some notable exceptions are
researchers in the field of large space structures who optimize
plant and controller design simultaneously {10-11]. While ap-
plicable to only linear systems, their work does share our design

Fig. 1 Block diagram of the closed-loop system

Our framework is applicable to computer-controlled, closed-
loop, nonlinear, multibody mechanical systems, like robotic
manipulators and magnetic tape drives. For brevity, such sys-
tems will be called closed-loop systems and, for the purposes
of this paper, consist of a plant and controller, tied together
with a feedback loop (Fig. 1).

The contents of the paper are as follows. The plant-controller
redesign problem is formally defined in Section 2. The cor-
responding redesign framework is then developed in Section
3. Section 4 demonstrates the application of the redesign frame-
work to improve the performance of a second order single-
input, single-output system while Section 5 uses the redesign
framework to address a problem of considerable engineering
interest: the selection of the best control strategy for a robotic
manipulator from a dynamic performance standpoint. Finally,
Section 6 summarizes the present work and draws relevant
conclusions.

2 Problem Definition

In this paper, plant refers to the uncontrolled dynamic sys-
tem of interest and closed-loop system refers to the combi-
nation of the plant and controller, tied together with a feedback
loop. The controller in Fig. | is shown to be a function of
both the ‘“controller’’ parameters and the plant parameters in
order to include those controllers which use information about
the plant to compute a control input (e.g., observer-based
controllers).

Suppose that a nominal closed-loop system exists with in-
adequate performance. The nominal design can be described
by four quantities: the plant structure (or configuration), the
controller structure, a vector of parameters describing the plant,
and a vector of parameters describing the controller. The plant
structure is defined analytically by the following equations:

x (1) =£(x(2),u(1),ppst),

y(2) =h(x(t),u(?),pp?). 4))

Since the plant structure is known, the functions f(+) and h(-)
are known. The controller is defined analytically by the fol-
lowing equation: .

u(t) =c(y(2),r(2),pp,Pest)- (2)

The nominal controller structure, and thus the function ¢(-),
is known. Parameter vectors representing the nominal plant
structure and nominal controller structure are given by p, and
P., respectively.

Constraints and requirements on the closed-loop system re-
sponse can be represented by the dynamic equalities and in-
equalities

S.(x(t),u(t),pype,t) =0,

philosophy. Si(x(2),u(t),PpPe,t) <0, 3)
Nomenclature
¢(*) = controller function vector r(t) = external reference input vec- t; = final time
f(e) = plant dynamic equation vec- tor u(t) = control-input vector
tor S/+) = closed-loop system equality u*(t) = optimal control-input vector
h(s) = output function vector constraint vector X(t) = dynamic system state vector
J = objective function S{*) = closed-loop system inequality x(t) = x(t) differentiated with re-
p. = controller parameter vector constraint vector spect to time
p, = plant parameter vector t = time y(t) = output vector
loumal af Mechanical Dacian 1IHINF 1004 VVnl 11A [ 207



Table 1 Outline of the optimization probiems. For all, It Is necessary
that the problem pass if a redesign solution exists with only the free
variables changed. Oniy in problems three and four is it also sufficient
that the problems pass for such a redesign solution to exist.

coatroller plant

pmblem# sufficient pamuneters SUUCRIE  RaRAMCISS  SHICIUIS

1 no N free free fixed
2 no - free fixed fixed
3 yes free fixed free fixed
4 yes free fixed fixed fixed

where the subscript e denotes equality constraints and the sub-
script i denotes inequality constraints. Usually, the equality
constraints will include the initial and/or final conditions

x(0) =xq,

X ( tf) =Xy. (4)
The closed-loop dynamic performance is explicitly measured
by an objective (or cost) function of the form
t

J=K(x/,ppPorlp) + S L(x(),u(£),ppPe,t)dt. (5

0
where K(¢) and L(+) are general. nonlinear functions. Most
traditional time-domain performance measures—like rise time,
settling time, and minimum time—can be expressed in this
form. Without loss of generality, we will assume that the ob-
jective function must either be reduced or minimized in order
to improve performance.

We can now state the general redesign problem as follows:
How should a given nominal closed-loop system defined by
f(+), b(*), Py, P, and c(+) be redesigned so that the perform-
ance, as measured by the objective function J, is satisfactorily
improved while the system constraints S,(+) and S{+) are not
violated?

Inorder to resolve the general redesign problem posed above,
the designer has to make one of the following design decisions,
which are arranged in order of increasing cost:

(1) Change the controller parameters.

(2) Change the controller structure.

(3) Change the plant parameters and (as a result) the con-
troller parameters.

(4) Change the plant structure.

The redesign framework described in the next section pro-
vides a rational basis for making the appropriate redesign
decision.

3 Framework Description

We use optimization theory to study redesign issues for
nonlinear closed-loop systems for the following reasons:

(1) In redesign, we look to better the dynamic performance
of a nominal closed-loop system. If we know the best
performance the system can achieve (i.e., its performance
limit), we will know if it is possible to achieve the desired
performance improvement. QOptimization theory pro-
vides a natural way to determine performance limits.

(2) Optimization provides a consistent framework with which
to pose problems containing constraints, nonlinearities,
and dynamic performance measures. Different problems
of interest may be formulated and their solutions com-
pared within the same framework.

(3) General optimization algorithms exist which are able to
solve the problems of interest. See, for example, [12-15].

(4) Designers are, in general, familiar with optimization. For
example, optimal control theory is common in control
system design.
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Perhaps the most important reason for using optimization
theory is that, in contrast to most commonly used approaches
[1,2], the feedback controller parameters (or gains) are ob-
tained with all important constraints embedded a priori in the
formulation of the (optimization) problem. An important con-
sequence of this fact is that the performance of the actual
system, under the *‘action’’ of these controller gains, closely
matches the predicted simulation results, i.e., the optimization
yields “‘realistic’> controller gains. [The preceding statement
can be corroborated by comparing the simulation results of
Fig. 5(a) with the experimental results of Fig. 5(b)]. Fur-
thermore the incorporation of constraints a priori in the for-
mulation of the optimization problem also enables us to
compare different feedback controlstrategies, acting on a given
plant, from a performance standpoint.

Our framework is based on examining the solution of four
optimization problems, each lending insight into a different
aspect of redesign. In each, the objective function (5) is min-
imized subject to the dynamic system (1) and the constraints
(3). The problems differ in the set of variables that can be
chosen to minimize the objective function and in whether the
controller structure is specified or free. The solution of each
optimization problem yields the best performance available
from the dynamic system, i.e., its performance limit, under
the given set of conditions indicated in the last four columns
of Table 1. As will become clear in the sequel, knowiedge of
the performance limits, under the various conditions of Table
1, is the key to making rational and proper redesign decisions.
The four optimization problems, which have been numbered
for future reference, are described below.

Problem No. I: For the given plant structure, determine the
combination of control input u(¢) and plant parameters vector
p, which yields the best performance, i.e., minimizes the ob-
jective function (5).

The solution to this problem determines whether any rede-
sign solution exists with the same plant structure (1) as the
nominal system. The optimal control u®(¢) obtained as the
solution to this problem is the best over all controllers: no
controller, regardless of structure, can perform better. How-
ever, the optimal control u® (¢) will most likely be open-loop
(as opposed to closed-loop) and will not actually be imple-
mented. Rather, the solution indicates the best performance
achievable by any controller, regardless of structure, acting
on any plant with the given structure.

If the performance of the system after this test proves not
good enough, then the plant structure mus: be redesigned.
However, if the performance is good enough, no definitive
information is known. It is possible, though not guaranteed,
that adequate performance can be achieved without redesign-
ing the plant structure since in practice a closed-loop controller,
and not the optimal control, will be used. In other words, the
test is necessary but not sufficient to ensure the existence of
a redesign solution with the given plant structure.

Problem No. 2: For the given plant structure and given (nom-
inal) plant parameters, determine the control input u(¢) which
yields the best performance.

The solution to this problem determines whether any rede-
sign solution exists with the same plant as the nominal system.
The control input is free but the plant—both in structure and
in parameter values—is fixed, so that a standard optimal con-
trol problem is solved. The resulting optimal control solution
u’ (1) indicates the best performance achievable by any con-
troller acting on the nominal plant.

If the performance of the optimal solution is not good
enough, then the plant must be redesigned: no controller acting
on the nominal plant can achieve adequate performance. As
in problem one, if the performance of the optimal solution is
good enough, no definitive information is gained. It is possible,
though not guaranteed, that adequate performance can be
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Fig. 2 Redesign ftiowchart

achieved by redesigning only the controller. This test is nec-
essary but not sufficient to ensure the existence of a nominal
redesign solution with the same plant structure and parameters
as the nominal plant. It is hoped that a nominal design which
passed problem one but fails problem two can achieve adequate
performance without redesign of the plant structure.
Problem No. 3: For the given plant structure and a given
feedback controller structure of the form (2), determine the
plant parameter vector p, and controller parameter vector p.
which yields the best performance.

The solution to this problem determines whether any rede-

sign solution exists with the given plant structure and a given
feedback controlier structure. The plant parameters and con-
troller parameters are variable, but the controller structure and
plant structure are fixed. If the optimal solution provides ad-
equate performance, then the parameters found may be used
in the redesign. If the performance is inadequate, then either
the controller structure or the plant structure must be rede-
signed. This test is necessary and sufficient to ensure the ex-
istence of a redesign solution with the same plant structure
and controller structure as the nominal system.
Problem No. 4: For the given plant structure with specified
plant parameter p, and a given feedback controller structure,
determine the controller parameter vector p. which yields the
best performance.

The solution to this problem determines whether any rede-
sign solution exists with the nominal feedback controller struc-
ture and given plant. The controller structure, plant structure,
and plant parameters are fixed. Only parameters describing
the controller are variable. If the performance of the optimal
system is good enough then, like problem three, the analytical
redesign is complete. If not, then some redesign other that that
of the controller parameters must be done. This test is necessary
and sufficient to ensure the existence of a redesign solution
with the same plant structure, plant parameter values, and
controller structure as the nominal system.

The four problems are summarized in Table 1. Figure 2
shows one way, but by no means the only way, that the prob-
!ems may be used in redesign. In the discussion below, the aim
15 to reduce or minimize the objective function in order to
improve performance. In Fig. 2, p #1 denotes problem 1 de-
fined and discussed above; similarly p #i, (i = 2, 3, 4), denotes
the appropriate problem defined and discussed above. The
abbreviation rps in Fig. 2 denotes “‘redesign plant structure’’
and rcs denotes ‘‘redesign controller structure.’’

In Fig. 2, the redesign process begins with a nominal design
that does not meet the desired performance specifications.
Problgm one (p #I) is first solved; if the optimal objective
function vaiue found in problem one is lower than the (desired)
performance specification, the solution is said to ‘‘pass’’ and
problem two is solved. If the optimai objective function vaiue
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is higher than the performance specification, the problem is
said to ‘‘fail’’ and, iteratively, the plant structure is redesigned
(rps) and-problem one retried until a structure is found which
passes. After a structure that passes problem one is found,
problem three is solved.

If problem one was passed with the nominal plant structure,
problem two is solved. Problem four is solved if problem two
passes, else problem three is solved. If either problem three or
problem four passes, the redesign is complete. However, if
either fails, the controller structure is iteratively redesigned
(rcs) and the problem retried until passed. Because it is possible
that no controller structure can be found which passes, an
alternate action to redesigning the controller structure is de-
signing the plant structure.

The redesign flowchart is arranged so that the simplest change
which yields a successful redesign is found. For example, if a
nominal design exists which requires changing only controller
gains in order to satisfactorily improve system performance,
problems one and two would pass and new controller gains
would be assigned in the solution of problem four. If anominal
design exists which requires a new controller structure to sat-
isfactorily improve performance, problems one and two would
pass, problem four would fail, the controller structure would
be redesigned, and new controller parameters appropriate to
the new controller structure would be assigned in resolving
problem four.

Two examples will be used to demonstrate the application
and utility of the redesign framework. In the next section, the
redesign framework of figure two is applied to a nondimen-
sionalized second-order spring-mass-damper plant. The ex-
ample shows that the redesign optimization problems are
solvable and lead to better closed-loop dynamic performance.
Then, in Section 5, we use the redesign framework to shed
light on a problem of considerable engineering interest at the
present time: the selection of the best control strategy for a
robotic manipulator from a dynamic performance standpoint.
The latter problem is addressed in the broader context of si-
multaneous plant-controller design of robotic manipulators for
improved performance.

4 Example 1: Redesign of a Second-Order System

A spring-mass-damper plant can be described by the state
vector x(1) = [x (1) x2(¢)]7, where x, (¢) is position and x; (¢)
is velocity. If all states are available for output, the nominal
plant structure is given by dynamic equations

() _[ x (1)
— (k/m)x,(t) — (c/mxy(t) +(1/m)u(t)

h(e)=x,(1) (6)
where m is mass, ¢ is the damping coefficient, and k is the

spring constant. The mass of the plant is fixed at m = 1| so
that the plant parameter vector is
po=Ik . N

The control input commanded by the controller is linear
state feedback, proportional-derivative (pd) control given by

u’' () =nr(t) —kx, (1) —kxa(2) ®

where &, and k, are constant feedback gains and » is a reference
gain selected such that the closed-loop system has zero steady-
state error in response to a step input (i.e., n = k& + k). If
the control input commanded by the controller is subject to
saturation, with maximum u,,,, the nominal controller struc-
ture is

u’ (1) for lu’ (1) <upay

C(0)={ , ) “} (9)
Upax 587 (' (1)) for lu’ (4) | =uy
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Table 2 Summary of results for Exampie 1. Parameters not selected in
a problem are indicated by a “-".

paramerer  nominal  problem#] problem#2  problem#3

k 1.00 1.91 1.00 1.93
c 2.00 0.219 2.00 0.186
ki 4.00 - - 13.7
k2 2.46 - - 6.36
ts1 - 0.985 1.59 -
1 - 131 1.77 -
ts2 - 441 5.02 -
2 . 526 5.40 ;

] 202 1.31 1.66 1.32

and the nominal controller parameter vector is

Pe= [k kol (10)
Note that the actuator constraints are embedded a priori in
the feedback controlier structure.

The performance of candidate redesigns will be compared
by their ability to follow the reference input:

[ forO=<t<it,
r(t) =
0fort,<t<o,

(1
where ¢, = 4 is the command switch time. The system starts
from rest initial conditions, levying equality constraints

Se(*) = [x,(0) x:(0)]". (12)
We choose the performance measure to be the integral absolute
error (1AE) criteria

J=§ Ix(t)y-r(t)| dt (13)
1]

The IAE is a measure of the ability of the closed-loop system
to track reference commands. It is similar to the more familiar
integral time absolute error (ITAE) criteria for pole placement
{16], but without the time weighting. The ITAE criteria places
more emphasis on the error at later times; the 1AE criteria
places equal emphasis on the error at all times. If the system
tracks the reference perfectly, the objective function value is
zero.

The closed-loop parameter values (7) and (10) for the nom-
inal system, summarized in the first column of Table 2, have
been chosen such that the plant and the closed-loop system
are critically damped. The response of the nominal system to
the reference input (11) and the resultant control input u(z)
are shown in Fig. 3(a). We address the problem where the
dynamic performance of the nominal system is inadequate and
redesign is required. Since the nominal value of the objective
function is J,,m = 2.02, we decide to set a performance goal
of Jmax = 1.50 which represents a 25 percent decrease in the
nominal performance measure value (or a 25 percent improve-
ment in performance).

As seen in the previous section, the process of rational rede-
sign will involve the resolution of the following performance
related questions:

(I) For the given plant structure and given actuator con-
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Fig. 3(b) Redesigned closed-loop system for Exampie 1

straints, what is the best performance attainable if the
plant parameters can vary within their specified limits.
(2) What is the best performance attainable for the given
plant structure, given (nominal) plant parameters and
given actuator constraints.
For the given plant structure, a given nominal feedback
control strategy (state feedback in our case) and given
actuator constraints,
(@) what is the best performance attainable by the ap-
propriate combination of plant parameter and controller
parameters and
(b) what are the values of the plant parameters and
controller parameters which yield the best performance.

In addition, we will pose the foliowing useful question:
(4) How ‘‘good’’ is the proposed state-feedback control strat-

egy from a performance standpoint.

The solutions of Problems one, two, and three of the rede-
sign framework will yield, respectively, quantitative answers
to questions one, two, and three above. Comparison of the
solution of Problem three with that of Problem one will yield
the answer to question four above.

The solution of Problem one will tell us whether it might
be possible to achieve the desired performance improvement
without redesigning the plant structure. (As mentioned in the
previous section if the problem *‘fails,’* then the plant structure
must be redesigned; if the problem *‘passes,’’ then it might be
possible to obtain the desired performance improvement.) The
solution of Problem two will inform the designer whether it
might be possible to achieve the desired performance improve-
ment with the given plant structure and the given nominal
plant parameters. (If problem two *‘fails,” then the plant pa-
rameters must be varied from their nominal values in order to
obtain the desired performance improvement.) Finally, the
solution of Problem three will inform the designer whether or
not (s)he can obtain the desired performance improvement by
a suitable combination of plant parameters and controller pa-
rameters for the given nominal feedback control strategy and
will also provide the values of the plant parameters and the
controller parameters that yield the best performance.

With the above background, we now discuss the solution of
our redesign problem in more detail.

In accordance with the redesign framework of Fig. 2, we
first solve problem one: choose u(f) and p, to minimize (13)
subject to (6) and (12). The optimal control is found to be
piecewise constant:

3)
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Fig. 4 A two-degree-of-freedom planar manipulator

 Upge fOr 0t <ty O
~ Upg, fOr 1, <1< 1y
k for 1y <1<y,

ut (1) =< f

(14)
— Uy, for e, <1<,

Upey fOr 1 <1<pp

. 0 forip=t .)

where 1y, tn, g, {p are switch times. The optimal values for
the plant parameters and switch times are summarized in Table
2. The optimal value for the objective function in problem
one, J, = 1.31, is lower than the performance goal J,.., and
problem one is said to ‘‘pass’’ (Fig. 2).

Since problem one passed, problem two is solved: choose
u(¢) to minimize (13) subject to (6) and (12). The optimal
control has the same form (14) as the optimal control found
in problem one, but with the optimal switch times shown in
Table 2. The objective value for problem two, J, = 1.66, is
greater than the performance goal so the problem fails, in-
dicating that no redesign solution exists with the same plant
parameters and plant structure as the nominal system. We must
redesign the piant. Since problem one passed, it is hoped that
only the plant parameters, and not the plant structure, need
be redesigned.

We now solve problem three: choose p, and p. 1o minimize
(13) subject to (6), (9), and (12). Note that we have retained
the nominal controller structure. The optimal solution to prob-
lem three shows that the objective function value J; = 1.32
is lower than the performance goal; the problem passes and
the redesign is complete. Figure 3(b) shows the plant position
X(¢) and input u(¢) in response to the reference input (11)
for the improved, redesigned system.

Examining the last row of Table 2, we see that the perform-
ance J; (= 1.32) obtained by a suitable combination of plant
parameters and controller parameters for the state-feedback
control strategy (problem 3) is very close to the best perform-
ance J, (= 1.31) obtainable by the dynamic system (problem
1). This implies that the state-feedback control strategy is an
extremely good control strategy for the given dynamic system
and the given appiication. The example therefore also dem-
onstrates how the framework can be used to assess the *‘good-
ness,”” from a performance standpoint, of a selected feedback
control strategy—a state feedback strategy in the present case.

5 [Example 2: Application to Robot Manipulator Con-
trol

The second exampie applies the redesign optimization to an
experimental robot to show how two controllers interact dif-
ferently with the same piant. We will address the following
three important but largely unanswered issues which arise in
the design of robotic systems for dynamic performance:

(1) Given two widely used control strategies which are rep-

Jonrmal af Macrhaniral Dacimm

Table 3{s) Component mass properties of the manipulator

component mass (kq) mass center (M) inenia (kq-m?
hnk 1 0.230 0.150 _00_0.1(39.__1
link 2 0.200 0.130 0.0013
molor 1 0.0 0.0 0.00064
motor 2 1.600 0.305 0.00064
ocounterweight 1 m,, -0.10 0.0
ocounterweight 2 me, -0.10 0.0

Table 3{b) Other fixed parameters of the manipulator

8,2[0000) 0,=(10° 0 90 0]
Tt 205 N Gz =05 Nom
re=000m rge=-010m

resentative of those used in robotic applications—a simple
proportional-derivative control strategy (at each joint)
and a more complex feedback linearization control strat-
egy—determine which of these control strategies yields
better performance for the given task.

(2) Should a manipulator be counterweighted in order to
improve its performance?
(3) What combination of controller parameters and plant

parameters yields the best performance for each of the
above control strategies?

The resolution of the first issue will demonstrate how one
chooses a suitable control strategy for robotic manipulator
applications. The resolution of the second issue will demon-
strate how one chooses a suitable configuration from a dynamic
performance standpoint. Furthermore, we will aiso demon-
strate how one can determine that combination of plant pa-
rameters and controller parameters (for a given feedback
control strategy) which yields the best performance for the
given task. We will resolve all the above issues by solving
Problem three in our redesign framework. Finally we will pre-
sent experimental verification of the ‘‘best’’ solution from a
performance standpoint.

The nominal plant is a two-link planar robot, shown in Fig.
4. The robot is direct-driven by two motors; motor 1, grounded
to the robot base, drives link 1 and motor 2, grounded to link
1, drives link 2. The links rotate in the (horizontal) plane
perpendicular to gravity.

In Fig. 4, I,, m,, a;, and L, are , respectively, the composite
principal moment of inertia, composite mass, composite center
of mass, and length of link / (see Table 3)!. For example, the
composite mass of link 1 consists of the sum of the mass of
link 1 and the mass of motor 2, which is grounded to link 1.
The robot has two degrees of freedom, which shali be taken
as the joint angles 6,(¢) and 6,(¢). For simplicity, define the
following:

pl=lz+mza% p3=ll+mla%+m21%

Da(1) = maayly cos(6,(1)) DPa(t) = maayly sin(6, (1))

d\i (£) =py+2p; (1) + ps dy (1) =dy2 (1)

dia(t)y=p+p(t) dyn=p

vi(f) = = pa(1)[03(1) +20,(1)6,(1)] v (1) =pa(t) 63 (1)
dpy(t) dp(t) v (f)
D)= V(t)=
( d:z(t)> 0 <v2(1)>

dy (1)

. NG (0

8n=|. T(t) =
<02(’)> « <rz(t)>

'All values in Table 3 correspond to an actual robot for which we will later
verify some of the anaiyticai resuits.
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The robot dynamic equations (or piant structure) can then be
expressed as

T()=D(1)O (1) + V(1), (15)

so that
6(1) =D (OH(T() - V(D] (16)

Note that the robot dynamic Eqs. (16) are nonlinear (in the
so-called joint velocities) due to V(¢) and that the dynamics
of each link are coupled due to V(¢) and the nondiagonal
D(1).

The dynamic task of the robot is to move from one specified
point to another in the workspace and the dynamic perform-
ance of the robot will be measured by the time the robot takes
in making the move (the move time ¢,). Two position controllers
will be studied. The first controller is a local proportional-
derivative (PD) controller with structure

wy (0 =1 (1) = = k6, (1) — k126, (1)

Uy (1) =12(t) = — k() — k282 (t) an

The PD controller is local in that it treats each link as a separate
system: control input u, (¢) is compu,ted using only infor-
mation about link | and control input u; (¢) is computed using
only information about link 2. However, because the link
dynamics are coupled, either control input working alone will
affect both links. Interactions between the links are treated as
disturbances by the controller, and rejected like any other
disturbance. -

The second controller to be studied is a feedback lineari-
zation (FL) controller {17], which uses an input transformation
to decouple the dynamic system (16). Explicitly, the transfor-
mation is

) (Duy (D) =D~ (O(T() - V(D). (18)

Since D(¢) and V(¢) are functions of the states of the system,
the input transformation is also a function of the states. Under
the transformation (18), the system (16) becomes

81 () =u, (1),

B2(8) =u; (1). (19)

Now, each control input is computed using information about
both links, but control input u, (¢) affects link 1 only and
input u, (¢) affects link 2 only. The transformed system is then
controlled by the linear control law

uy ()= — k(1) —ki20,(2),

uy (1) = —kp0y(1) —kp8(0). (20)

Note that the torque input 7(¢) can be obtained by combining
Eqs. (15), (19), and (20).

The motors which drive the {inks are subject to the following
constraints

'Tl(’) i = Tmaxty

ITZ(’)STmaxL (21)

As mentioned earlier, the above actuator limits are taken into
account a priori in the determination of the controller param-
eters (or gains).

The two controllers are different in several ways. The PD
controller treats the interactions between links as disturbances
and uses the actuator torques to reject the disturbances. The
FL controller explicitly calculates the interaction torques and
adjusts the link input torques to counteract the interactions.
Both controllers work well when the maximum torque limits
Tmaxi N Ty are high: the PD controller has plenty of torque
to reject interactions, and the FL controller has enough torque
to explicitly remove interactions. However, when torque limits
are not large enough and the motors saturate, the controllers
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Table 4 Local optimal for Exampie 2

system controlier gains objective
comroller  coumerwy Ry kia Kay kag move time 1
PD no 795 122 1020 60.6 0.613
PO yes 132 572 1160 102 0830
FL no 934 156 3310 269 0.857
FL yes 2010 288 4670 238 0.859

respond differently and can yield significantly different per-
formance, as will be seen. The first redesign question will
therefore be to determine which of the two control strategies
yields better performance for the given task and the given
constraints.

The second redesign question which we will pose is the fol-
lowing: should the robot be counterweighted in order to de-
crease its move time? A counterweighted robot has fewer
dynamic interactions and no nonlinear interactions between
links as can be seen by letting the centers of mass a; go to zero
in the robot dynamic Eqs. (15). Thus, both controllers will
have fewer interactions to counteract, and may yield faster
dynamic response. However, counterweights add mass and
inertia to the links, and the torque-limited motors might not
be able to overcome the additional load.

To answer the redesign questions, we solve an optimization
problem in which controller gains and counterweight masses
are chosen to minimize the move time. This is an exampie of
problem three (see Table 1) in which plant parameters (coun-
terweight masses) and controller parameters (controller gains)
are designed simultaneously. Counterweights of mass m,, and
m,; will be distances r.; and r., from the link rotation axis for
links 1 and 2, respectively. Formally, the problem is to choose
the controller gains and the plant parameters Ky, k12, k21, k22,
m.,and m., to minimize

J= ff (22)
subject to the initial and final conditions
(6:(0) 8,(0) 8:(0) 6,(0] =6y,
(81 (ty) 8.(2)) 62(t)) 82(2))1=64 (23)

the torque limit (21), the plant structure (16), and the controller
structure (17) or (18). Fixed parameters in the problem, in-
cluding the link mass properties, are shown in Table 4.

The problem was formulated and solved using a penalty
function approach. The objective (22) and the final state con-
straint (23) were replaced with the objective

J=1t,+1016,-6,l 24
where O, is the actual state at ;. For each controller, local
optima of interest exist for the robot with and without coun-
terweights. Thus, we will discuss four cases: the system with

(1) PD controller and no counterweight,

(2) PD controller and counterweight,

(3) FL controlier and no counterweight,

(4) FL controller and counterweight.

The optimal solutions for the four cases are summarized in

Table 4. The move time ¢, for each of the four possible cases

are given in the last column of Table 4. The following con-

clusions can be drawn from an examination of Table 4:

(1) The combination of a simple PD control strategy and an
uncounterweighted manipulator yields significantly better
performance than any of the other cases.

(2) The simple PD control strategy yields (@) significantly
better performance than the more complex feedback lin-
earization control strategy for the uncounterweighted case
and (b) yields slightly better performance than the FL
control strategy for the counterweighted case.

(3) The uncounterweighted design yields better performance
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Fig.5(a) Simulation resuits for pd controller with no counterweight and
gains as in Table 4
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Fig. 5(b) Experimental resuits for pd controiler with no counterweight
and gains as in Table 4

than the counterweighted design. Therefore for the pres-
ent example it is not advantageous to use a counterweight.

In summary, the example demonstrates that, in the present
context, the simpler mechanical design combined with the sim-
pler control strategy yields better dynamic performance. There-
fore adding complexity either in terms of control strategy or
mechanical configuration does not yield any advantage from
a performance standpoint. One must bear in mind, however,
that the above conclusions are dependent on the task speci-
fications and the objective function. Perhaps the most im-
portant conclusion is that we have demonstrated how the
redesign framework can be used to draw definitive and useful
conclusions about the performance of feedback-controlled dy-
namic systems.

In order to demonstrate the validity of the redesign opti-
mization resuits, a simpie experiment was conducted. The ro-
bot described by (16) with the torque limits and component
mass properties in Table 3 was controlled using the PD con-
troller (17) with the optimal controller gains given in row one
of Table 4. The position of both links (as measured by optical
encoders) versus time is presented in Fig. 5(b).

The response of the simulated system, Fig. 5(a), is in close
agreement with the experimental results, Fig. 5(b), despite the
use of a model that ignores such potentially important effects
as joint friction, controller sampling rate, and actuator dy-
namics. The model agrees well with the experiment because

Journal of Mechanical Design

the most significant constraint, motor saturation, was correctly
modeled and then incorporated into the formulation of the
plant-controller redesign problem. The experimental value of
the performance measure (about 0.65 sec) is within 10 percent
of the simulation value and, more importantly, the simulation
response captures all of the significant features of the exper-
imental response, proving that the optimization based frame-
work yields controllers that actually deliver the desired or
predicted performance.

6 Summary and Conclusions

The dynamic performance of a closed-loop dynamic system
is limited by plant design, controller design, and system con-
straints such as the bounds on actuator efforts. With this fact
in mind, we have developed an optimization-based redesign
framework which enables the designer to improve the per-
formance of a closed-loop dynamic system by the simultaneous
redesign of plant and controller. The framework is presented
as the formulation and solution of a progression of optimi-
zation problems which establish the limits of performance of
the dynamic system under various conditions of interest,
thereby enabling the designer to systematically establish the
various redesign possibilities. Using a second order linear dy-
namic system and a nonlinear controller as an example, we
demonstrated the application of the framework as well as one
of the important underlying ideas of the present work, viz.,
that in order to achieve the best possible performance from a
constrained closed-loop system, the plant and controller should
be redesigned simultaneously.

The system constraints which exert a critical influence on
dynamic performance are those imposed by the bounds on
actuator efforts. Constraints on actuator efforts are not nor-
mally taken into account in most analytical feedback control
system design techniques for linear and nonlinear systems,
leading to solutions which do not accurately predict the per-
formance of the actual dynamic system. Consequently these
solutions cannot be used to compare competing control strat-
egies (for the purpose of selecting the best control strategy
from a dynamic performance standpoint). Nor can these so-
lutions be implemented with confidence on the actual system.
Using a planar two-degree-of-freedom manipulator as an ex-
ample, we have shown that the solutions obtained from the
application of the proposed redesign framework do not suffer
from these major shortcomings. The robotic manipulator ex-
ample also demonstrated the nonobvious result that, for the
particular task, the more complex feedback linearization con-
trol strategy frequently proposed in the literature does not lead
to better dynamic performance than a simple PD control strat-
egy and can even lead to significantly poorer performance then
the PD control strategy.

A natural extension of the present work would be to study
typical performance robustness issues {6] within the redesign
framework.
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