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resolution of redundancy based on the pseudo-inverse of the manipulator Jacobian.
In this paper an alternative dynamical approach to redundancy resolution is devei-
oped which utilizes the mapping between the actuator torques and the acceleration
of the end-effector, at a given dynamic state of the manipulator. The potential

advantages of the approach are discussed and an example of a planar 3R manipulator
Jollowing a circular end-effector trajectory is used to illustrate the proposed approach
as well as to compare it with the more well-known approach based on the pseudo-

inverse.

1 Introduction

The task or primary function of a vast majority of manip-
ulators is to cause the end-effector to follow a desired trajec-
tory. If the number of degrees of freedom of the manipulator
arein excess of those required by the task, then the manipulator
is referred to as a redundant manipulator. The number of
degrees of redundancy of a manipulator is defined as the num-
ber of excess degrees of freedom which the manipulator pos-
sesses. A redundant manipulator offers the possibility, at the
cost of increased complexity, of exploiting its degrees of re-
dundancy in order to perform useful secondary functions, for
example, avoidance of obstacles or singularities {1]. (Actual
redundant manipulator systems for various applications are
described in {2-5].) A direct consequence of redundancy is
that, corresponding to a given end-effector trajectory, there
are an infinite number of possible manipuiator configurations.
Therefore a central problem in task planning or motion plan-
ning for redundant manipulators is the choice of a suitable
configuration from the set of infinite possible configurations.
This problem, referred to in the literature as the resolution of
redundancy, is the central theme of the present paper.

One popular set of methods for the resolution of redundancy
revolves around the use of the pseudo-inverse of the manip-
ulator Jacobian {6-18]. Most of the pseudo-inverse methods,
with the exception of {15-16} and {17-18], are primarily ki-
nematical in nature. Furthermore the pseudo-inverse methods
do not allow the user to exploit the actual number of degrees
of redundancy. In this paper we propose an alternative method
of resolving redundancy which has the following features:

(a) it is based on the mapping between the actuator torques

and the acceleration of the end-effector, at a given dy-
namic state of the manipulator,
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(b) it treats the actuator torques as the inputs or primary
variables which can be manipulated to achieve desirable
performance objectives,

(¢) it allows the user to exploit all the available number of
degrees of redundancy. .

(The meaning of the last statement is clarified in Section 2.)

The approach to redundancy resolution presented in this

paper is particularly appealing since the primary variables used
to resolve redundancy, the actuator torques, are the natural
set of inputs which control the motion of the manipulator.
The proposed approach is the dynamical counterpart of a
differential-geometric approach to the kinematical resolution
of redundancy, reported in [19, 20}, which was based on al-
tering local kinematic properties.

1.1 Outline of the Contents. I[n the rest of this section

-we more formally define the redundancy resolution problem

and then review the pseudo-inverse method of redundancy
resolution. To set the stage for our approach to dynamical
redundancy resolution, we first present the dynamic mapping
between the joint-torques and the end-effector accejeration for
nonredundant manipulators (Section 2). The mapping between
the actuator torques and end-effector acceleration for redun-
dant manipuiators follows in a relatively straightforward man-
ner from the resuits of Section 2. The use of this mapping to
dynamically resolve redundancy is then discussed in Section
3, followed by a description of the numerical algorithm for
planning trajectories based on our method. In Section 4, we
use the example of a planar 3R manipulator following a pre-
scribed circular end-effector trajectory, to demonstrate the
application of the proposed approach. The paper concludes
with a critical discussion of our approach to the dynamical
resolution of redundancy.

1.2 Statement of the Redundancy Resolution Prob-
lem. Consider the motion in three-dimensional space of the
end-effector of an m degree-of-freedom spatial manipulator
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n a reference-frame R. Let © = (8, 0,,... 9., be a vector of
he joint-variables and let E be a vector of the n (n<6) co-
srdinates which specify the position and orientation of the
:nd-effector in the reference-frame R. Let O also represent the
n-dimensional ‘‘joint-space’’ of the manipulator and let E also
-epresent the n-dimensional ‘‘task-space’’ of the manipuiator.
4 point in the joint space then represents a configuration of
‘he manipulator and a point in the task-space E represents the
sosition and orientation of the end-effector. Let ¥ denote th_c
vector of n functions which prescribe the position and ori-
sntation of the end-effector for a given configuration of the
manipuiator. We can then regard ¥: 6—E as the mapping
between a point in the m-dimensional *‘joint-space’’ © and the
corresponding point in the n-dimensional *‘task-space’ E.

For the most general case of spatial motion of the end-
sffector in R?, n = 6. If the number of degrees of freedom m
of the mampulator is greater than n, then the manipulator is
said to possess (m — n) degrees of redundancy. A manipulator
with (m—n)>0 degrees of redundancy is often referred to
simply as a ‘“‘redundant manipulator,’’ with (m—n) degrees
of redundancy.

For a nonredundant manipulator, corrcsponding to a vector
in the task space (i.e., a given end-effector position and ori-
entation) there are, in general, only a finite (unique) set of
possible joint-space solutions, i.e., the mapping ¥ is invertible.
For a redundant manipulator with (m— n) degrees of redun-
dancy, corresponding to a vector in the task space there are
0 !™=") joint-space solutions, i.e., the mapping ¥ is nonin-
vertible. This fact leads directly to the problem which has been
referred to in the literature as the resolution of redundancy,
viz., the probiem of obtaining a joint-space soiution (f;,...,
6,,) for a given task-space vector E from the infinity of possible
joint-space solutions. 1t should be emphasized that in the res-
olution of redundancy one would like to obtain a solution
which is not only feasible but also meets some desirable ob-
jective.

1.3 Review of Existing Redundancy Resolution
Schemes. Ingeneral, the problem of obtaining a unique (4y,...,
6.) for a given task space vector is complex owing to the fact
that the functions defining the mapping ¥ are typically non-
linear. Instead most researchers resolve redundancy at the level
of velocity or at the level of joint acceleration by using the
Moore-Penrose generalized inverse, also cailed the pseudo-
inverse [21], and then determine (8,,..., 8,) by integration. In
the context of the present work, it is useful to review the
psuedo-inverse based schemes for the resolution of the redun-
dancy at the level of )omt accelerauon

Let © denote (0 froers 6..)7. We can express the end-effector
velocity E as

m
E=J6=) ¥, (1)
i=1
where J is the (n X m) Jacobian matrix whose ith column ¥; is
a¥/a6;. The acceleration E can be written as

E=J6+16= Zw+22wuoa,. )
izl j=
where © is (6,,..., ,,,) , J is the derivative of the Jacobian
matrix, and ¥; is azwao,ao, (i=1,2,...m), (=1,2,..m).
The dynamic equations of motion of a manipulator can be
written as
I'=M(8)8 + C(8, 6)+g(0), A3)
where T is the (m x 1) vector of actuator torques, M(0) is
the (m x m) mass matrix, C(0, 0) is the (m x 1) vector of
Coriolis, centrifugal, and friction terms and g(©) is the (m x
1) vector of gravity terms.
Khatib {15, 16] used the pseudo-inverse of J at the joint
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acceleration level for the resoiution of redundancy and for
control. He used the inertia-weighted pseudo-inverse Jy, and
obtained O as follows:

0=Jy(E-1JO). “4) .
In {17, 18], Hollerbach and Suh used the pseudo-inverse
of J together with a null-space term to minimize
IT ~ (1/2)(a + B)I%, where « and 8 are the (m x 1) vectors of
upper and lower torque limits at the joints, respectively. In
their approach O is obtained as

6=J"(E-J0)+(1-J"IF, (5
“where (I -J* J)Fis the nuli-space vector, and F was given by
F=(1/2MI-3"D]"(a’ +8"). ©)

In the above equation;, «’ = «=T’', 8" = 8 - I'’, and
I’'=MJ*(E-J6)+C(0, 6)+5(0). ™M

The pseudo-inverse method of redundancy resolution can
be viewed as an attempt to solve the redundant manipulator
problem in a manner suggested by the solution of the corre-
sponding nonredundant manipulator problem. In this regard
the method does not exploit the actual number of degrees of
redundancy; for example, it cannot differentiate ten degrees
of redundancy (say) from one degree of redundancy. Therefore
the analyst cannot clearly see the effect of increasing the degrees
of redundancy in a given problem. Furthermore, it is not pos-
sible to satisfy more than one performance criteria even in the
case where we have more than | redundant degree of freedom.
In contrast to the pseudo-inverse method, we will present a
straightforward approach to the (dynamical) resolution of re-
dundancy which is based on the kinematicai and dynamicai
equations of the manipulator and which aliows the analyst to
make use of all the available degrees of redundancy. In order
to develop a better understanding of the proposed approach,
we first discuss the dynamics of nonredundant manipulators.

2 Dynamics-of Nonredundant Motions

In this section we review the relationship between the ac-
tuator torques and the end-effector acceleration for a nonre-
dundant manipulator. This review will also facilitate the
differentiation of the nonredundant case (discussed in Section
3) from the redundant case. Let p(x, y, z) be the Cartesian
coordinates in R® of a reference point en the end-effector of
a three degrees-of-freedom manipuiator. The trajectoncs of
this reference point lie in a bounded *‘solid’’ region in R’. The
invertible mapping between manipulator configuration (8,, 6,
6;) and end-effector position can be written as

(x, y, )T =¥(8y, 6,, 63). ®

The velocity, v, at any generic position p in R? [the image
of a generic configuration (8,, 6,, 85)] is given by
v=J(0)0=¥,0,+¥,0,+ ¥;6,, )
where J(@) is the (3 x 3) invertible Jacobian matrix corre-
sponding to the position p and ¥; = (3¥/30), (i = 1, 2, 3),
is the ith column of J(O).
The acceleration of the rcfcrcnce-point can be written as

a=J(0)0+J(8)6 = Z ¥h+ Z Z ¥;0,0,,
i=l im] j=)
where J(O) is the derivative of the Jacobian (with rcspect to
time) evaluated at the position of interest and ¥; = 3°¥/30,36;.
The equations of motion for a three-degree-of-freedom mcch-
anism can be symbolically written as

T =M(©)0 + C(0, 6)+g(®), an

where T is (r;, 72, 73)7, the (3 X 1) vector of the actuator
torques applied at the joints, M(®) is the (3 X 3) symmetric
positive definite mass matrix, C(©,0) is the (3 X 1) vector of

(10)
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the Coriolis. centripetal. and friction terms, and g(0) is the (3
x 1) vector of gravity terms. Since M(0) is always invertible.
we can combine (10) and (11) to obtain the tollowing expression
for acceleration:

a=J(OM(0)"' [T -C(O, 6)—g(®)]+ 6. (12)

Finally, denoting the three columns of J(@)M(8)™' by u,,
(f=1,2,3), and defining,

70,0)=J0~IM™'[C(O, 0)+g(©)], (13)

we can express the end-effector acceleration in the following
useful form:

a= 47y + poy + pymy + 10, O) (14)

where 7, (i = 1, 2, 3), is the actuator torque applied at the
ith joint. Equation (14) is fundamental to our approach for
dynamical redundancy resolution. We can make the following
observations from Eq. (14):

(1) The vectors u;, (i = 1, 2, 3,) are functions only of O,
and, at a given position p, the map {p:.I'—a is linear. The map
£6:0—a (at a given position) is quadratic. The properties of
this mapping are extensively discussed in {22]. At a given state,
i.e., known (9, 0), the nonlinear term, (9, 0), is a known
constant vector.

(2) At a given state, the direction and the magnitude of the .

acceleration vector changes with respect to 7, (( = 1, 2, 3).
Without any constraint on the torques, the acceleration vectors
fill up ail of R*. With a typical constraint of the form
T S7, =57, (i =1, 2, 3), where ;) and 7;, are, respectively,
the lower and upper bounds on the jth actuator torque, the
set of all allowable acceleration vectors férm a parallelopiped
as a consequence of the linear mapping between I' and a {22].

(3) In the case of a nonredundant manipulator, for a given
end-effector acceleration a and a given dynamic state (0, )
of the manipulator, the actuator torques are uniquely deter-
mined from (14).

3 Dynamical Resolution of Redundancy

In this section we describe the dynamical approach to re-
dundancy resolution, demonstrate its application and finally
present an aigorithm for the implementation of the approach.
In contrast to the nonredundant manipulator, for a given end-
effector acceleration a and a given dynamic state (@, 0) of the
manipulator, there are an infinite number of feasible combi-
natons of actuator torques. This fact will provide the basis
for our dynamical approach to exploiting redundancy.

3.1 Approach. In the case of a redundant manipulator,
the governing equations, similar to those of the nonredundant
manipulator, are as follows:

(x,2)" = ¥(@,,..., 0,) (15)

v=J0=¥0,+...+ ¥,0, (16)

a=J8+i0=Dud;+ >, 3 ¥, an
i=1 im] jul

T =M(9)0 +C(8,0) +2(0) (18)

Combining Egs. (17), (18), and (13), we can write the expres-
sion for end-effector acceleration as

a= 3 i+ 0.6)

i=1

19

In the above equation, a and n are (3 X 1) vectors, 5 is
defined in (13) and u,, (1 = 1, 2,... m), is the ith column of
the (3 X m) matrix JM~'. At a given dynamic state (0, 0) of
the manipulator, the vector g is known and Eq. (19) can there-
fore be considered as a mapping between the actuator torques
7; and the end-effector acceleration a. This mapping (19) be-
tween the joint torques and the end-effector acceleration is the
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basis for the dynamical resolution of redundancy proposed in
this paper. As a consequence of (19), the dvnamical resolution
of redundancy reduces 1o the solution of the following prob-
lem:

Given an end-effector trajectory p(x, y, z) and an appropriate
end-effector acceleration profile a(7) that yields the desired end-
effector trajectory, determine the joint torques 7{s), (i = 1,
2,... m), which when applied to the manipulator will cause the
(reference-point on the) end-effector to follow the desired tra-
jectory p(x, ¥, 2).

In the rest of the section, we show how the mapping (19)
can be directly used to resolve redundancy without recourse
to the the pseudo-inverse. Once the 74(¢), (i = 1,..., m), are
obtained, we will integrate the equations of motion to obtain
oy, etc.

We first make the following two general observations:

(1) The resolution schemes in [15-18) attempt to solve for
the joint-acceleration vector © from the expression a =
JO + J O by using an appropriate pseudo-inverse, and then use
the dynamical equations of motion to solve for 6(f), etc.. The
pseudo-inverse solution based on joint acceleration essentially
minimizes 161. We could alternatively use a pseudo-inverse
scheme based on torque which would yield the torque solution
T'; this solution would minimize IT'I.

(2) From the available m actuator torques r;, (¢ = 1, 2,...
m), in the mapping (19), (m - 3) actuator torques can be
specified at the will of the analyst. These (m — 3) *‘free”
torques can be used, for example, to cancei the noniinear term
WO, 0) as discussed in the next section.

3.2 Application. One potential application for the dy-
namical redundancy resolution approach is the use of redun-
dancy to cancel the nonlinearity (9, ). We motivate this
application by discussing the well-known method for the con-
trol of nonlinear dynamical systems known as feedback line-
arization {23]. For rigid robot manipulators, we can think of
feedback linearization as a (nonlinear) control strategy which
uses a part of each actuator torque to ‘‘cancel’’ the nonlinear
terms in the dynamical equations. The technique is called feed-
back linearization for the following two reasons:

(a) the nonlinear terms are computed based on actual
(sensed) states of the manipulator which are fedback to the
controller, and

(b) the ‘‘new’’ dynamical system which results after the
‘“‘canceilation’’ of the nonlinearities is linear or, more precisely,
‘‘feed-back linearized.””

The potential advantage of feedback linearization is that one
can then apply standard techniques from linear control theory
to design controlers for the feedback linearized system. An
aiternative to feedback linearization, suggested by the mapping
(19), is to make use of (m — 3) “‘free’’ torques to cancel the
nounlinearities. If 7 = (m — 3) denotes the number of degrees
of redundancy, then complete cancellation of the nonlinearities
would require at least 3 degrees of redundancy, i.e., r=3 in
the spatial case for complete cancellation. The mapping be-
tween the actuator torques and acceleration which resuits after
the cancellation of the nonlinearities is linear, providing the
aforementioned potential advantages in control.

We now demonstrate how the actuator torques can be used
to cancel the nonlinearity (0, ©) in the mapping (19). As-
suming that the last (m ~ 3) actuator torques are the ‘‘free’”’
variables which will be used to cancel the nonlinearities, we

set
m
Z mTi+3=0.
jub

(20)

Since nis a (3 X 1) vector we can arbitrarily pick three of
the (m — 3) “free”’ or ‘‘redundant’ torques r;, (i = 4,..., m),
as unknowns. The appropriate magnitude of these torques is
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obtained by simply taking the dot product of Eg. (20) with
three independent vectors in R’ and then simuitaneousty solv-
ing the three resulting scalar equations. If there are r<3 re-
dundant degrees of freedom, we can only cancel noniinearities
along r(< 3) preferential directions.

In section 4, we use an example of a planar 3R manipulator
to illustrate the application of the dynamical resolution of
redundancy to the cancellation of nonlinearities.

3.3 Algorithm for Redundancy Resolution. In this sub-
section, we present an algorithm for the dynamical resolution
of redundancy. We assume that the end-effector acceleration
profile a(f) and the initial state (6(0), 6(0)) of the manipulator
are known. The redundancy resolution scheme provides an
additional set of (m — 3) equations in 7;, (i = I,..., m).

(i) Step 1—For the given initial state evaluate (©,0) using
(13).

(i) Step 2—Solve for 740), (i = 1,...,m), from the three
equations in (19), the value of & at 7 = 0, and the (m — 3)
equations obtained from the resolution scheme.

(fii) Step 3—Integrate the dynamical equations of motion
(18) with the known initial conditions to obtain 6, ©, etc., at
the end of the integration time-step.

(iv) Step 4—Evaluate 5 [Eq. (13)] at the end of the time-
step.

Steps 1 through 4 are then repeated for each new time-step
until the final time is reached. The time step used for the
integration should be small enough that the quantities (x’(s),
y'(0), 2°(), v'(n), and a’(f) computed from the above pro-
cedure are very close to the given (x(?), y(#), 2()), ¥(t) and a(?).
(The coordinates (x(#), »(f), z(1)) of the end-effector path are
either given or obtained from integration of given a(#)).

4 IMHustrative Example

In this section, we illustrate the application of the ideas
developed in section 3 to a planar 3R manipulator. Both the
approach based on the mapping (19) as well as the approach
based on the pseudo-inverse will be applied and then compared.

4.1 The Planar 3R Manipulator. If we are only interested
in the path (and therefore the position) of the end point of the
3R manipuiator, then we have one degree of redundancy. The
manipulator moves in a horizontal plane and therefore ail terms
due to gravity in the dynamical equations are identically equal
to zero. Figure 1 shows a three degrees-of-freedom manipulator
in the (horizontal) XY plane. There are three revoiute joints,
with joint variables ¢,, 83, and 6,. The link lengths are a,,, a3,
and ai,, the masses of the links are m;, (i = 1, 2, 3), the
distances to the center of gravity of the links from the joint
end are r;, (j = 1, 2, 3), and the principal central moments of
inertia about an axis normal to the XY plane are I;, (i = 1,
2, 3). We are interested in the motion p(x,y) of the end-point
of link 3. The displacement equations, ¥: (8, 62, 6;)— to (x,¥),
are

X=a)2C, +anC .2+ a3C 14243,

Y=a125 +a351+2+ 03514243, (21)

where ¢, 5, €142, 51+2, €IC., represent, respectively, cos(6,),
sin(6,), cos(8, +68,), sin(8; +0,), etc.
The velocity and acceleration are given by

V=*lél+*zéz+*3ég,

3 33
a= Z ¥+ Z Z ¥,0,0,,

i=1 j=1 i=1

22)

where ¥; and ¥; are the first and second derivatives (with
respect to the §;’s) of the mapping function ¥ given by (21),
and 4;and 6; are the time derivatives of §;. Detailed expressions
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Fig. 1

A planar 3R manipulator

for¥;and ¥;;, (i = 1, 2, 3), (j = 1, 2, 3), are given in Appendix
A.
The equations of motion are

r=M6+C(o, 6), (23)
and we can express the end-effector acceleration as
a=py7 +paTa+ T3+ (24)
In the above equation,
m=¥m'y +¥m’y+¥ym’ 3,
pe=¥ym’ i+ ¥om pn+ ¥ym' sy,
m=¥\m' 3+ ¥om' 5+ ¥ym'y,, (25)
3 3 3
n=2 >, ¥pd- > uCi (26)

J=1 i=] f= ]
where m’;, (i, j = 1, 2, 3), are the elements of the inverse of
the mass matrix, and C;, (i = i, 2, 3), are the eiements of
C(0, 0). Detailed expressions forthe m’;, (| = 1,2,3), (j =
1,2,3),and G, (i = 1, 2, 3), are given in the Appendix.
The numerical vaiues of the geometric and the inertia pa-
rameters are as follows:

I,=0.0644kgm?, I,=0.0161kgm? I;=0.004kgm*

my=2.254kg, my=2.177kg, my=1.0531kg
ry=0.1960m, r;=0.0980m, ry=0.0490m
ay;=0.3048m, ay3=0.1524m, a14=0.0762m

4.2 Simulation Results. For the purposes of simulation
and of illustrating the proposed dynamicai resolution schemes,
the end-point of the third link was commanded to follow a
circular path centered at (0.141, 0.116) with radius 0.0222m.
The initial values of (8,, 6,, 64) are (0, 135, 45) degrees. The
initial values of 8,, (i = 1, 2, 3), were chosen to be zero. The
initial (x, y) coordinates of the tip of the manipulator (obtained
from the kinematic Eqs. (21)) are (0.1208, 0.1078). A smooth
acceleration profile a(f) was chosen so that the end-point of
the third link of the manipuiator compietes the circle in 1.0
sec. The desired trajectory and acceleration profiie are shown
in Fig. 2 and Fig. 3, respectively.

We experimented with three resoiution strategies. The first
was a very simple strategy of setting one of the torques to zero.
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Fig. 4 Case 1-torque profiles for r, = 0

Ve chose to set 7, = 0.0 as typicaily the first actuator expe-
iences the maximum torque. The second strategy was the
ipplication of the pseudo-inverse method to the mapping (19)
n order to obtain the torques at the three joints. The third
trategy was partial cancellation of »—since there is only one
‘edundant degree of freedom, we can cancel y in only one
lirection. We chose to cancel 4 in the direction of uj.

The aims of the simulations are to illustrate the theory de-
reloped in Section 3 and to obtain some insight into the various
‘edundancy resolution schemes by comparing the torque pro-
1le obtained in each case.
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In all cases the integration was performed by a variable step
Kutta-Merson predictor-corrector method.
Case 1—71 1= 0
Figure 4 shows the torque profiles for r, = 0. It can be seen
that the maximum torque is required from actuator 2. The
maximum value of 7, is approximately 1.9N-m at ¢+ = 0.5
seconds. In Fig. 5, the trajectory of the tip of the end-point
of the third link is compared with the desired trajectory. The
error is very small and is due to build-up of errors during
integration. The strategy of setting the base actuator torque
71 = 0 is useful for manipulators operating in microgravity
environments (24}, where an important requirement is that no
torque (and force) be transmitted to the base of the manipulator
(i.e., 7, must be equal to zero).

Case 2—The Pseudo-inverse solution.

The torque profiles are shown in Fig. 6. They are very similar
to the ones obtained in Case 1. As in Case 1 the maximum
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torque is required from the actuator at the second joint. The
trajectory of the tip (not shown) again follows the desired
trajectory very closely with insignificantly small errors building
up towards the end.

Case 3—Partial cancellation of %8, 6)

The torque profiles are shown in Fig. 7. In this case the torque
required from the actuator at the first joint (7)) is significantly
larger than the other actuator torques. The torques required
from actuators at joints 2 and 3 are comparable to the previous
two cases. The tra;ectory of the end-point again very closely
followed the desired trajectory with negligibly small errors
building up towards the end.

5 Discussion

The trajectory chosen in our example was a circle. The
method also works for straight line or piece-wise straight line
trajectories. Care must however be taken if there are singu-
larities in the trajectory. It was observed during simulations
that if there are singularities in the trajectories (8, or 8; equal
to 0 or 180 degrees for the current exampie), one cannot par-
tially cancel the nonlinear term. This is due to the fact that
the torques at the joints become very large as the end-effector
approaches a singularity. The ability to achieve the desired
performance measures will also be limited by the maximum
and minimum torques avaiiable at the actuators. In the present
example, the simulations have not taken into account the limits
on the actuator torques. The magnitudes of joint torques ob-
tained from the dynamic resolution of redundancy clearly de-
pend on which actuator torques are chosen as the *‘free’’ joint
torques.

We have dealt only with the positional aspects of the motion
of the rigid body. To account for the rotationai motion of the
rigid body, we need to deveiop the map between joint torques
and angular acceleration of the end-effector.

In conclusion, in this paper we have presented an aiternative
approach for the dynamic resolution of redundancy. This ap-
proach does not require the use of the pseudo-inverse of the
Jacobian or any other matrix. As an application of our ap-
proach, we have shown how the nonlinear terms in the equa-
tions of motion can be cancelled by use of redundancy. Finaily,
we have illustrated the new approach with an exampie of a
planar 3R manipuiator.
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APPENDIX

In this appendix the detailed expressions for ¥;, ¥, (f,j =
1, 2, 3), the components of the inverse mass matrix, m’y, (i,
j =1, 2, 3), and the components of C(0, ©) are given. In
Eqgs. (A1)-(A4) below, a;;, 1;, m;, r; are the quantities defined
in section 4.1.

The expressions for ¥;and ¥, i,/ = 1, 2, 3, are as follows;
T T T
¥ =ap(—51,0) +an(—S1+2,C142)" +823(—=514+243,C14243)
= T T ’
Yo=a23(—5142,€142)" +F2(—S142+3,C1+2+3)
Yy=ay(-5 )T
3= a4 1+2+3:C1 4243
- T T T
Y11= —@1(C1,51) — @3(€1+2,5243) + —A23(—S142435C1+2+43)
Vo= T r
2= —a23(C1+2,5243)" — @3(—=5142+3:€1+243)
Wy = T
1= = 83(=514243,C14243)
Y=V
Y3=V¥;

Wy =¥33 (AD)

The expressions for mj;, (i = 1,2,3),( = 1, 2, 3), are as
foliows:
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