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ABSTRACT

A large class of tasks for mobile robots require the
robot to cover an enclosed space that might contain
several objects (obstacies). The usual approach to this
problem is to design a sensor-intensive, computer-
controlled robot that usually has a relatively simple
kinematic form (type). The control of such a robot is
difficuit, expensive, and frequently unreliable. This
paper demonstrates how the complexity in sensing and
control can be circumvented by synthesizing a "chaotic”
kinematic motion that, when appropriately embodied by
a kinematic form, covers the space and easily deals with
obstacles. The evolution of the "chaotic”, sensorless,
mechanical mobile robot from concept, through
analysis, numerical simulation and form embodiment,
to realization is described. The testing of the prototype
clearly demonstrates how, for the present task, complex
“chaotic” motions do considerably simplify the control of
the robot. A computer controlled prototype capable of
mimicking the behavior of its mechanical counterpart is
also described.

1. INTRODUCTION

In this paper we address a fundamental question in
the design of autonomous mobile robots. Can one
simplify the control of the robot by suitably designing
its form (kinematic type, kinematic structure)? This
question is addressed in the context of a complex task
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which typifies of a large class of applications:
navigating in ("covering”) an enclosed space which
contains several objects (that must be avoided). A
practical example of such a task is the design of a
mobile robot to autonomously vacuum-clean the floor of
a room. We demonstrate analytically and
experimentally how the control of a mobile robot can be
considerably simplified by the intentional introduction
of a suitable discontinuity in the kinematic motion and
corresponding form ("type') of the robot. In the
particular case studied in this paper the discontinuity
results in "chaotic” behavior which enable the mobile
robot to deal relatively easily with the objects in the
workspace.

A straight-forward and widely used solution to the
problem of covering an enclosed space is to build a
platform with two independent, single degree-of-
freedom, computer-controlled drive wheels. By
suitable selection and control (open-loop or closed-loop)
of the angular velocity of each drive wheel the robot can
be suitably programmed to cover the prescribed space.
However this mechanical form has considerable
difficulty in dealing with obstacles and usually requires
very complex motion planning strategies, for example,
the use of potential fields [Khatib, 1986] to properly
navigate in an obstacle field. It is clear that the simple
motion capability at each wheel and resulting simple
kinematic form is offset by the complexity in controlling
the device(to perform its task). This observation leads
us to pose the following important design problem:



Synthesize a complex kinematic motion and resulting
kinematic form that considerably simplifies the control
of the machine.

The approach taken to resolving the above problem is
based on the observation that deterministic systems
with relatively simple structure can, by suitabile input
excitation, be made to exhibit so-called chaotic motions
[(Moon,F.C., 1992]. These chaotic motions have two
properties which serve as the basis for the mobile robot
design:

(1) they tend to "fill" or "cover” a space,

(ii) the random nature of the motion enables
wall and objects (obstacles) to be treated as merely
additional sources of randomness that.do not require
the use of complex, control strategies for dealing with
them.

We now describe how, starting with the above premise,
the design {Pahl and Beitz, 1992] of a "chaotic” mobile
robot evolved from concept through embodiment of form
to actual realization and testing.
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FIGURE 1 A COMPUTER CONTROLLED MOBILE
ROBOT

2. OUTLINE OF THE PAPER

The design of the mobile robot can be decomposed into
the following steps:
(i) Synthesize a “chaotic” kinematic motion that by its
very nature covers the space.
(ii) Let the robot "interact” with the obstacles rather
than try to explicitly avoid them. (Interaction with
obstacles will be defined and addressed in more detail,

later). The interaction with the obstacle will simply
cause the robot to move in some new direction that does
not adversely affect, and might even aid, the "chaotic”
motion. The problem of dealing with obstacles is
therefore resolved in a relatively simple fashion.

(iii) Synthesize a kinematic form (type) that realizes the
motion synthesized in step (i).

(iv) Develop and test suitable realizations of the
kinematic form.

In the next section we synthesize a kinematic motion
that covers the space and deals with obstacles. In
section 4 we develop both mechanical and
programmable ways of achieving the desired motion.
The actual realization of the robot is then discussed in
Section 5. Finally in Section 6 we briefly summarize
the results, draw relevant conclusions and discuss work
in progress.

It is important to note that separation of the kinematic
motion synthesis from the kinematic form synthesis is
essential in order to generate both mechanical and
mechatronic concept variants [Pahl and Beitz, 1992] for
achieving "chaotic” motion.

3. MOTION SYNTHESIS

In order to develop a device that displays chaotic
motion, we start with a simple wheel B rolling on a
horizontal plane. For the present purposes the wheel,
which is vertical, has two inputs 8 and (b, where 0 and
( are the two angles shown in Figure 2.

A

FIGURE 2 MOTION OF THE WHEEL



The actuator which produces the input 8 is called the
drive actuator, and the actuator which produces the

input (.p is called the steering actuator. The magnitude

of ¢ is generally much less than that of 8. If (.p and 0
are constant, then the trajectory of the mass center B*
of B, when B rolls without slipping on a plane (see
Figure 2), and the wheel is always vertical, is a circle.
In the analysis below 0 is a constant.

A model is chosen to generate equations that provide
behavior that covers the whole space. One such model
is to have rotations of two different scales and
introduce a discontinuity. A graphical representation of
the model is shown in Figure 3.

3.1 Motion In the absence of wall and object
constraints

Consider a simple wheel B which can rotate about twa
orthogonal axes passing through its center of mass B*

and parallel to unit vectors bzand b3 fixed in B. Let A

be a fixed reference frame and let al , a2, a3 be a dextral
orthogonal set of unit vectors fixed in A. The anguiar

velocity ( of B in A can be written as

o =0by + ¢bs (1)

In our case both @ and (p are specified functions of time

(there is an actuator causing the specified angular

speed about each axis). Therefore, only two generalized

co-ordinates (X,Y) are necessary to describe the
configuration of B in A (see Figure 2).

The velocity V of the mass center B* of B in A can be
written as
—oBt . - ..
V' =Xa; + Ya (2
Let P denote the point of B that is in contact with the
horizontal piane at the instant of interest. If B rolls on
the harizontal plane then

Voo (3)

It can be easily shown that the condition (3) gives rise to
the following equations:

X = r9(t)cos(¢(t))

Y= rO(t)sin((1)) (5)
Let the angular displacement (t) be produced by an
input angular displacement Y(t) and let the

4)
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relationship between ((t) and Y(t) be as shown in
Figure 3. Furthermore, let

y=at (=>y=a) (6)
where (@ is the constant angular speed of the input.

From Figure 3 we see that (p is a discontinuous periodic
function given by

=0 n@2n)<at<n(2r)+p
=a n2r)+P<at<(n+1)2x, (n=0,1,2,..

(7
<) (8)

The angie p in Figure 3 will be referred to as the dwell
angle. During the time corresponding to the dwelil

angle the steering rate, (b=0, i.e. the wheel moves in a
straight line.
If we define,

¢@) = o(1=iT)
where T =2r/cx. Then from Figure 3

o() = (0) +i2n-B)

9

(10

Without loss of generality we will assume, that

¢(0)=0 an

>
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FIGURE 3. STEERING ANGLE AS FUNCTION OF INPUT

If (X(0), Y(0)) denotes the initial position of the mass
center B” in A and (X(n), Y(n)) the position of the mass
center B* in A at t=nT, then one can show that

X(1) = X(0) + récos((p(O))g

+ Bsin(9(0)-sin(e(0)+B)] 12)



Y(1) = Y(0) + régsin(cp(O))
+ rg—{cos(Bﬂp(O))-cos((p(O))} (13)

By the same argument, the position of B® after nT
seconds is given by,

X(n) = X(n-1) + récos((p(n-l))g
+Ig—{sin((p(n-l))-sin((p(n-1)+B)} (14)
Y(@) = Y(n-1) + régsin((p(n-l))

+r-g-{cos(Bﬂp(n-l))-cos((p(n-l))} (15)

From equations (14) and (15) one can easily see that if
=0, i.e., the output ( is a continuous linear function of
the input Y (in Figure 3), then

X(n)=X(n-1) (16)

Y(n)=Y(n-1) an
which means that as stated earlier, the trajectory of the
mass center B” is a circle.
Combining equations (12) and (14) and using recursion
we can write,

X(n) = X(0) - xﬂ-sin([})
+ z re—cos(Bl) I9—sm(B(n 1) as

i=0
Similarly, combining equations (13) and (15) and using

recursion we can write,

Y(n) = Y(0) +ﬁcos(B)
z ré—sm(Bx) ﬁ—cos(B(n-l)) (19)

Equations (18) and (19) describe the mapping between
the initial position (X(0),Y(0)) and the position after n

periods. From these equations we can make the .

following observations:

(1) If B is measured in degrees and 360/B is rational,

then the motion of B* is periodic. If p denotes the
periodicity of the motion, i.e.

X(p+n) = X(n)

Y(p+n) = Y(n),

then, =360/HCF(360,B) (20)

where HCF(360,8) is the highest common factor of 360
and B.

(2) If 360/ is irrational, the motion of B is quasi-
periodic.

3.1.1 Simulations

It is useful to describe the kinematic motion of the
wheel by three states X,Y and (p whose evolution in
time (flow) is described by the differential equations (4),
(5), (7) and (8). In order to understand and characterize
the motion of the mobile robot the following numerical
simulations were performed:
1. The trajectory (X(t),Y(t)) of the mass center B*
obtained by numerically integrating equations (4), (5),
(7) and (8).
2. The discrete map corresponding to the position
(X(n),Y(n)) of the mass center B* at t=nT seconds.
(X(n),Y(n)) are also given, respectively by equations (18)
and (19).

Trajectory

Y(t)

(a) Xt

Map
Y(n)

*
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FIGURE 4 MOTION OF THE MASS CENTER FOR

DWELL ANGLE =90°



The trajectory and corresponding map of B* for

rational dwell angles B=90° and 18°are shown,

respectively in Figures 4 and 5.

Trajectory

A(U]

Xx(t)

Y(n}
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[1-3}

FIGURE 5 MOTION OF THE MASS-CENTER FOR
DWELL ANGLE =18°

The trajectory and map of B* for the case when the

0/3-1).900
2

dweli angle B is irrational (= ( ) is shown in

Figure 6.

For each simulation the initial state of the device is
(0,0,0), 8=6.5 rad/sec, 1=0.628 rad/sec. The simulations
shown in Figure 6 were run for 800 seconds. The radius
of the wheel is 0.25 feet (=0.0625m).

From the above simulations the following useful
observations emerge:

1. By appropriate choice of B and the ratio (8/a) it is
possible for B* (and therefore the wheel) to cover a
space of any size.
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2. As predicted by equations (18), (19), the maps
corresponding to rational dwell angles (Figure 4(a),(b))
are periodic with periodicity given by equation (20).

3. The map shown in Figure 6 (b), corresponding to the
irrational dwell angle, clearly reveals the expected
quasi-periodic nature of the motion. Note how densely
the corresponding trajectory covers the space. If the
simulations were run for a longer period of time the
corresponding map(see figure 6b) would cover a circle.

4. The simulation resuits of Figures 4, 5 and 6 indicate
that a small rational dwell angle tends to approach the
space-covering property of an irrational dwell angle.

Trajectory

Y(t)

x(t)
(a)

Map
Y(n)
P
/ N
{ {
\ !
~ 7
P et
X(n)
®)
FIGURE 6 MOTION OF THE MASS-CENTER FOR AN
IRRATIONAL DWELL ANGLE

3.2 Motion In the presence of wall and object
constraints
We allow the wheel (robot) to make contact with the
wall and model the interaction between the wheel and
the wall as follows. When the wheel touches the wall,

the mass center B* essentially stops moving. The wheel

“precesses” about the vertical axis at the rate (p=0t until



the vector Dy (see Figure 2) is parallel to the wall at
which point the wheel moves parallel to the wall. (This
model is consistent with experimental observations (see
Section 5) for an actual robot (wheel) moving at
moderate speed and lightly impacting a wall.

A simulation of the motion of the mass center B" of
the robot moving in a rectangular walled space is shown
in Figure 7 (a) and 7(b). The simulations are done in a
room of size 10 feet x10 feet with a dwell angle of 18
degrees and for a time period of 800 seconds. These
simulations are performed by treating the wheel as a
point in its configuration space (Lozano-Perez, 1983).

In the simulations shown in Figure 7, in order to

cover the whole space, the ratio e/(p is chosen such that

9/ (p is a little greater than half the largest dimension
of the room .

Trajectory

‘D)

FIGURE 7 MOTION OF THE MASS-CENTER IN THE
PRESENCE OF WALLS

The next step is to study the effect of obstacles in the
workspace. If the wheel is permitted to lightly impact
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the obstacles then the interaction between the wheel
and the obstacle is modeled as in the case of the wall. A
simulation of the motion of the mass center of the robot
moving in a rectangular walled space which contains
two obstacles is shown in Figures 8(a) and 8(b).

Trajectory

o)

FIGURE 8 MOTION OF THE MASS-CENTER IN THE
PRESENCE OF WALLS AND OBSTACLES

From Figures 7 and 8 we see that the presence of
walls and obstacles make the motion of B* (and
therefore, the robot) "chaotic”, which is what is desired.
Furthermore, the robot simply takes the walls and
obstacles in its "stride” and does not require any
complicated obstacle avoidance/motion planning
strategy.

3.3 "Chaos"

An explanation of the use of the word “chaotic” in the
present context is in order. To this end, two more sets
of simulations were done. The results of the first set of
simulations (Figure 9) show the sensitivity of the



trajectory of B* to initial conditions for the following
two cases:

(i) The wheel moves in an open space(the dashed line in
Figure 7).

(i1) The wheel moves in an enclosed (i.e., walled) space.
(the solid line in Figure 7).

In each case the initial state (0 was given a small
perturbation and the magnitude of the resulting
perturbation in the trajectory of B* was computed and
plotted as a function of time (Figure 9). While the
trajectory of B® in an open space is not sensitive to
initial conditions, the corresponding trajectory in the
enclosed(walled) space displays considerable sensitivity
to initial conditions.
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FIGURE 9. SENSITIVITY TO INITIAL CONDITIONS
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FIGURE 10 IMPACT MAP

The second simulation, shown in Figure 10, is an
impact map which is obtained by determining X' and ¢,

where X' represents the point on the unfolded wall
perimeter where the wheel makes impact with the wall
and (' (in degrees) is the corresponding steering angle
at the time of impact. (The coordinate X' is normalized
w.r.t. the perimeter of the room = 40 feet, and the angle
(' (degrees) is normalized with respect to a full
revolution). Each point in Figure 10 therefore
represents a point of impact. The clustering of the
points along the diagonal indicates that the wheel
"visits" each wall at several points along the length of
the wall.

While the motion of the wheel for the case of obstacle
constraints (Figure 8) is not chaotic in the classical
sense {Moon,1992;0ttino,1989] it is
(a) obtained from a simple deterministic set of
differential equations.

(b) is sensitive to initial conditions (Fig. 9) and

(c) it displays complex ("chaotic") behavior (Figures 8
and 10). We have therefore decided to call the observed
behavior "chaotic”.

In summary, we have shown that a wheel driven at a

constant rate 8 and with a discontinuous steering input

(i) will, in the presence of obstacles (walls and objects),
exhibit a "chaotic” motion which effectively covers the
space and easily deals with obstacles.

4. FORM SYNTHESIS

In order to develop a kinematic form capable of
realizing the chaotic motion synthesized above, two
issues must be resolved. The first issue is the
implementation of the input-output motion described by
equations 7 , 8 and shown in Figure 3. The second issue
is the interaction of the robot with obstacles.

One method of implementing the desired kinematic
motion is shown in Figure 11. Motor 1, called the drive
motor (see figure 11(a)), essentially "supplies” the

constant angular speed 8 which propels (drives) the
wheel (or robot). Motor 2, acting through a pair of gears
labeled input gear and output gear, “supplies” the time-

dependent, discontinuous, periodic angular speed (p In
order to obtain the desired input-output kinematic
motion shown in figure 3, the input gear must be
"mutilated” as shown in Figure 11(b), by an amount
equal to the dwell angle B. The output gear(and,
therefore, the shaft which causes the vertical rotation @
of the wheel) will then have the desired output motion
shown in Figure 3. Another method of obtaining the



necessary dwell is to use a six-bar linkage which has
a(n) (approximate) single dwell: the input-output
relationship in this case would be discontinuous.
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FIGURE 11. SCHEMATIC OF A MOBILE ROBOT

The required output motion ((t) can also be obtained
by suitably programming the computer controlled
mobile robot shown in Figure 1. If the appropriate
angular velocity command is given to each drive wheel,
then the robot in Figure 1 can be made to mimic the
singie drive-wheel robot of Figure 11. We can therefore
program the robot of Figure 1 to have a single "virtual”
drive wheel with any desired steering motion (for
example, the steering motion () shown in Figure 3).

The basic obstacle interaction strategy, as mentioned
earlier, is to let the robot lightly impact the obstacle
causing the drive motor(motor 1) to stall. The steering
motor then turns the wheel till it is free to move in a
direction parallel to the tangent to the obstacle surface
at the point of contact (impact). To keep the motor from
stalling between the time when the robot impacts the
obstacle and the time when it is free to move, a slip

clutch, which permits the motor shaft to spin freely
w.r.t. the wheel shaft if the load torque from the wheel
exceeds a specified magnitude, must be inserted
between the motor shaft and the wheel shaft. In order
to further facilitate the interaction of the robot with
obstacles the base of the robot can be made circular in
shape as shown in Figure 12.

drivik wheael
casters

FIGURE 12. PLAN VIEW OF THE ACTUAL MOBILE
ROBOT

In the case of the computer controlled implementation
(Figure 1), the robot can be programmed to interact
with the obstacle in a manner similar to that described
above. Furthermore, additional sensing (using sonar,
for example) can be advantageously used to ensure that
while the robot gets close to the obstacle, it does not
make actual contact.

5. REALIZATION AND TESTING

A systematic design process {Pahl and Beitz, 1992}
was used to develop two actual mobile robot prototypes
based on the ideas developed in Sections 3 and 4. One
prototype uses the kinematic form shown in Figure 11
and is discussed in more detail below. The other
prototype is the computer-controlled mobile robot that
is shown schematically in Figure 1 and that is currently
being programmed to mimic the behavior of the
mechanical implementation. The design of both the
prototypes is comprehensively documented in the report
[MAE 425, Fall 1993].

The realization of the mechanical implementation (see
Figures 11(a),(b)) of the “chactic” mobile robot is shown
in Figure 13. The robot has a single drive wheel with
two independently driven axes as shown in Figure
11(a). Four caster wheels (see Figure 12) are used to
provide additional support for the platform which
supports the payload (in this case a vacuum cleaning



unit) carried by the robot. A slip clutch between the
drive motor and the drive wheel prevents the drive
motor from stalling whenever the robot hits a wall or an
obstacle. Figure 14 is an exploded view showing the
relative placement of the components that make up the
drive wheel assembly (drive motor, slip clutch, etc.).
The circular shape of the platform facilitates the
navigation of the robot near the walls, corners, and
obstacles. A spring loaded bumper minimizes the

impact forces on the robot during interaction with the
object.

FIGURE 13 "CHAOTIC" MOBILE ROBOT

To test the robot the following task was defined: clean
a 12x20 foot room which has several objects in it. To
determine how well the robot covered the space (i.e.
cleaned the room) the floor was covered with little bits
of paper. The robot was then set in the room and
allowed to move. The following results were obtained:
1)The robot motion was very “chaotic”.
2)The robot had no difficulty dealing with obstacles,
walls or corners.
3)The room was quite thoroughly cleaned in five
minutes. The chaotic motion was therefore very
effective in covering the space.
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The robot was tested several times with different
initial conditions. (A videotape of the robot performing
its task is available for inspection). From the results of
the test we can conclude that the "chaotic” mobile robot
effectiveiy covers the space and deals with obstacles as
predicted by the analysis in Section 3.

6. SUMMARY AND CONCLUSIONS

In Section 3 we showed that a simple discontinuous
kinematic steering motion (Figure 3) containing a dwell
period, in conjunction with walls and obstacles, leads to
the “chaotic” motion of a driven wheel. A mutilated
gear form (Figure 11 b) was used to obtain the required
dwell period. Finally, in order to demonstrate the
feasibility of using "chaotic” motions to perform useful
tasks, an actual prototype was realized and
successfully tested.

A second computer controlled prototype has also been
built and will be programmed to perform the task
(covering an enclosed space which contains obstacles) by
mimicking the mechanical design described in Section
5. This programmable machine, once it successfully
performs its task, will have the added advantage-at the
expense of additional sensing-of avoiding contact with
obstacles. The completely mechanical prototype
demonstrates the premise that the appropriate
synthesis of a relatively complex (in the present case,
“chaotic”) kinematic motion and its corresponding
kinematic form results in a mobile robot which is easy
to control.
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