Tables and Priority Queues
Tables

- Previously: each node stored one item
- Now: Groups of related information in records
 - Records indexed by key
 - Key is just one of the pieces of information – the one you want to be able to search on
- Support fast searching by key – $O(\log n)$
- Also support scanning for other information in records
 - But not as fast – $O(n)$ instead of $O(\log n)$
- Examples
 - Student records
 - List of pirated MP3s
Table ADT – Operations

1. Create an empty table
2. Determine whether a table is empty
3. Determine the number of items in a table
4. Insert a new item into the table
5. Delete the item with a given search key from the table
6. Retrieve the item with a given search key from the table
7. Traverse the items in a table in sorted search-key order
public abstract class KeyedItem {
 private Comparable searchKey;

 public KeyedItem(Comparable key) {
 searchKey = key;
 }

 public Comparable getKey() {
 return searchKey;
 }
}
public class City extends KeyedItem {
 private String country;
 private int population;
 public City(String theCity, String theCountry, int pop) {
 super(theCity);
 country = theCountry;
 population = pop;
 }
 public String toString() {
 return getKey() + ", " + country + " " + population;
 }
 public void setPopulation(int pop) { population = pop; }
 public int getPopulation() { return population; }
 public String getCountry() { return Country; }
}
TableInterface

import searchkeys.*;
public interface TableInterface {
 public boolean tableIsEmpty();
 public int tableLength();
 public void tableInsert(KeyedItem newItem)
 throws TableException;
 public boolean tableDelete(Comparable searchKey);
 public KeyedItem tableRetrieve(Comparable searchKey);
}

Implementing the Table

- Linear implementations
 - Unsorted array
 - Unsorted linked list
 - Sorted (by key) array
 - Sorted (by key) linked list

- Non-linear implementations
 - Binary search tree

- Criteria
 - What operations are needed?
 - How often will different operations be used?
 - How important are the different operations?
Examples

- Small, unsorted data, fixed size
 - Array
- Small, unsorted data, variable size
 - Linked list
- Small, sorted data, variable size
 - Linked list
- Large, unsorted data, variable size
 - Linked list
- Large, sorted data, variable size
 - Binary search tree
Comparison of Implementation Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Insertion</th>
<th>Deletion</th>
<th>Retrieval</th>
<th>Traversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Unsorted linked list</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted array</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(logn)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Binary search tree</td>
<td>O(logn)</td>
<td>O(logn)</td>
<td>O(logn)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>
See Table Code
Priority Queue

- It is often useful to assign a **priority** to different data items
 - so that urgent items can be processed first

- Examples
 - **Time** in a todo list
 - **Importance** in a list of phone calls to make
 - ...

It is often useful to assign a **priority** to different data items so that urgent items can be processed first. Examples include **Time** in a todo list, **Importance** in a list of phone calls to make, and...
Priority Queue ADT

1. Create an empty priority queue
2. Determine whether a priority queue is empty
3. Insert a new item into a priority queue
4. Retrieve and then delete the item in a priority queue with the highest priority
Implementing Priority Queues: Heaps

- A complete binary tree that is
 - Empty, or
 - Whose root has heaps as its subtrees, and
 - whose root contains a key greater than or equal to the key of each of its children
- Heaps are always balanced
- There is no order on the values of the keys of the two children of a node
 - Unlike binary search trees
Array-based Implementation of a Heap

- Breadth-first order in the array
- Complete tree \Rightarrow no gaps in array
Inserting into the Heap

- Breadth-first order in the array
- Complete tree ⇒ no gaps in array
Deleting from the Heap (1)

- Always delete the root
 - It has the highest priority
Deleting from the Heap (2)

- Oops, now we have two heaps
Deleting from the Heap (3)

- Repairing the heap:
- Move the last element to the top
Deleting from the Heap (4)

- Repairing the heap:
- Now “trickle down” by comparing and swapping until heap is restored
Deleting from the Heap (5)

- Repairing the heap:
- Now “trickle down” by comparing and swapping until heap is restored
Deleting from the Heap (6)

Calculating indices:
- leftchild = 2*parent + 1
- Rightchild = 2*parent + 2
Deleting from the Heap (7)

- Now it’s a heap again
- Total time $O(\log n)$
Inserting to a heap

- The opposite of deleting
- Insert at the bottom, then “trickle up”
Heapsort

- **One way**
 - Insert everything into the heap, then
 - Take everything back out

- **Faster way**
 1. Make it a heap
     ```java
     for(int index = n/2; n >= 0; n--)
         heapRebuild(array, index, n);
     ```
 2. Swap the first item (largest) with the last (last--)
 3. heapRebuild(array, index, last);
 4. Repeat until all items are in the right place
Heapsort

- Make it a heap by doing `heapRebuild` to each node
 - Starting with leaf nodes

```
<table>
<thead>
<tr>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
```
Heapsort

- Swap first and "last"

Swap first and "last"
Heapsort

- last = last – 1
- heapRebuild()
Heapsort

- Swap first and “last”

```
2
5
3
1
6
9
```
Heapsort

- last = last - 1
- heapRebuild()
Heapsort

- Swap first and “last”

```
1
2
3
5
6
9
```
Heapsort

- $\text{last} = \text{last} - 1$
- heapRebuild()
Heapsort

- Swap first and “last”

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

LAST
Heapsort

- `last = last - 1`
- `heapRebuild()`

```
2
1
3
5
6
9
```

LAST
Heapsort

- Swap first and “last”
- Done!

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

LAST