Trees
Last time: recursion

- In the last lecture, we learned about recursion & divide-and-conquer
 - Split the problem into smaller parts
 - Solve each of the smaller parts separately: easier to code & understand!

- Apply these techniques to storing data so that it is
 - Ordered
 - Easy and efficient to find

- List-type structures don’t do both
 - Lists & arrays: ordered, but lookup is slow

- We want a structure that can do both!
Quickly finding a particular item…

- **Problem:** in a class of n students, who has the mth best grade?
- **Use a (sorted) linked list?**
 - Easy to find: count m links from the start
 - Difficult to insert: must search along the list to find the correct insertion point
- **Use an array?**
 - Same kinds of advantages and disadvantages as linked list
What if we only have the value?

- Rather than find the \(m \)th best grade, find the student whose grade is 77
 - Can’t just count \(m \) items any more!
 - Must scan the list / array until we find the correct student
- A better way: binary search
Binary Search

- Take a sorted array of values
- While (item not found)
 - “Guess” the item in the middle of the array
 - See if the desired item is above or below the guess
 - Narrow down the search area by half
- This works in \(\log_2(N) \) tries on an array with \(N \) values
- Much faster than simply scanning
Binary search

- Similar to recursion
 - Problem split in half at each step
 - Main difference: ignore the half where the value isn’t
- Recursion doesn’t usually save time
 - Easier to program, though
- Binary search saves time!
 - Rule out half of the remaining values at each step
 - Like recursion where we ignore half of the problem each time we recurse

```c
int bsearch (int values[], int findThis) {
    int range = values.length;
    int base = 0;
    int mid;
    while (range > 1) {
        range = (range+1)/2;
        mid = base+range;
        if (findThis > values[mid]) {
            base = mid;
        } else if (findThis==values[mid]){
            break;
        }
    }
    if (values[mid]==findThis) {
        return (mid);
    } else {
        return (-1);
    }
```
Binary search is great, but…

- Binary search works well with arrays
 - Easy to find element n in constant time
 - Difficult to insert things into the middle of the array
- Binary search doesn’t work well with linked lists
 - Can’t find element n in constant time: long lists \Rightarrow long time to find elements
 - Easy to insert and delete things in the middle
- Modify linked lists to make searching easier?
 - Keep references into the middle of the list (1/4, 1/2, 3/4, or similar)?
 - Good idea, but doesn’t scale that well
 - Must recreate shortcuts when things are inserted or deleted
 - Create a new structure that uses links but is still easy to do binary search on?
Solution: trees

- A tree is a linked data structure where nodes may have more than one “next”
- Terms
 - “next” of a node is its child
 - “prev” of a node is its parent
 - Base of the tree is the root
 - Nodes along path to root are ancestors
 - Nodes “below” this one are descendants
 - Nodes with no children are leaf nodes
- Binary tree: tree in which each node has at most two children

```java
class BTNode {
    Object item;
    BTNode left;
    BTNode right;
    BTNode parent;
}
```
Why use trees?

- **Advantages of linked lists**
 - Insert or delete anywhere with ease
 - Grow to any size

- **Advantages of arrays**
 - Easy to do binary search
 - Easy to keep sorted

- And, lookup can be done quickly if the tree is sorted

- **Disadvantages?**
 - Overhead: three references per node in the tree
 - It’s easy to have trees grow the wrong way…
More tree terms

- Note: subtree can start at any node
 - There’s a subtree rooted at C!
 - Subtrees follow same rules as trees
- A tree’s **height** is the **largest** number of nodes from root to leaf
 - Height of the tree on the right is 4 (A->C->D->F)
- **Balanced** binary tree
 - For each node, the height of the left and right subtree differ by at most 1
 - This tree is not balanced!
- **Full** tree
 - No missing nodes
 - For all nodes, height of left and right subtree are equal
Classes used in building binary trees

- As with linked lists, two classes in binary trees
 - TreeNode: an individual node in the tree
 - BinaryTree: a subtree rooted at a particular TreeNode

- TreeNode objects support the usual operations
 - TreeNode (Object newItem)
 - TreeNode (Object newItem, TreeNode lt, TreeNode rt)
 - Object getItem()
 - void setItem (Object newItem)
 - TreeNode getLeft/Right()
 - TreeNode setLeft/Right (TreeNode left)
 - Note: this implementation doesn’t have “up” pointers in each node that point to the node’s parent

- These operations are straightforward
 - Similar to operations in linked lists
Methods to build binary trees

- Constructors
 - BinaryTree(): creates an empty tree
 - BinaryTree(Object rootItem): creates a tree with a root
 - BinaryTree(Object root, BinaryTree lt, BinaryTree rt): creates a tree with a root and left & right subtrees

- Attach things to the tree (root must already exist)
 - attachLeft/Right (Object newItem): attach an object to the left or right of the root
 - attachLeft/RightSubtree (BinaryTree tree): attach an entire tree to the root
 - attachLeft() could be done by creating a new subtree and attaching it with attachLeftSubtree()…

- Exceptions thrown for
 - Non-existent root
 - Trying to attach something on top of an existing subtree
Methods to take trees apart

- Often, necessary to take a tree apart
 - Make it better (more balanced)
 - Delete an item

- This can be done with
 - BinaryTree detachLeft/RightSubtree (): detaches a subtree from the root, and returns it
 - Left or right node set to null

- Informational methods
 - Object getRootItem ()
 - void setRootItem (Object newItem)
 - boolean isEmpty()

- How can we use these methods to build up a tree?
Create a simple tree

```
bt = BinaryTree ("A");
btt.attachLeft ("B");
ct = BinaryTree ("C");
ct.attachLeft ("D");
btt.attachRightSubtree (ct);
```
Example: Words Stored Lexicographically

```
Example:

<table>
<thead>
<tr>
<th>Word</th>
<th>Lexicographic Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foo</td>
<td>0</td>
</tr>
<tr>
<td>Bar</td>
<td>1</td>
</tr>
<tr>
<td>Map</td>
<td>2</td>
</tr>
<tr>
<td>Gas</td>
<td>3</td>
</tr>
<tr>
<td>Net</td>
<td>4</td>
</tr>
<tr>
<td>Fry</td>
<td>5</td>
</tr>
</tbody>
</table>
```

Diagram:
```
  Foo
 /   \
|     |
Bar   Map
 /     |
|      |
Gas   Net
 /     |
|      |
Fry
```
Example: Equation $a + (b*c)$
Example: Equation \((a+b) \times c\)
Example: Organization Chart

- Chancellor
 - Vice Chancellor
 - Dean 1
 - Dean 2
 - Other Vice Chancellor
 - Department Chair
A Recursive Definition of Binary Trees

- A tree \(T \) is a binary tree if either
 - \(T \) has no nodes, or
 - \(T \) is of the form

\[
\begin{align*}
 \text{n} & \quad \text{n} \\
 \text{\(T_L \)} & \quad \text{\(T_R \)}
\end{align*}
\]

- Where \(n \) is a node, and \(T_L \) and \(T_R \) are both binary trees.
Height of a Tree

- **Level of a node**
 - If \(n \) is the root of \(T \), it is at level 1
 - If \(n \) is not the root, its level is 1 higher than that of its parent

- **Height of a tree**
 - If \(T \) is empty, its height is 0
 - If \(T \) is not empty, its height is equal to the maximum level of its nodes

- **Recursive definition of height**
 - If \(T \) is empty, its height is 0
 - If \(T \) is nonempty, its height is equal to 1 + the height of its tallest subtree: \(\text{height}(T) = 1 + \max\{\text{height}(T_L),\text{height}(T_R)\} \)
Types of Binary Trees

- **Full binary tree**
 - All nodes at level $k < h$ have two children each
 - All leaves are at the same level

- **Complete binary tree**
 - All nodes at level $k < h-1$ have two children each, and
 - When a node has children, all nodes to its left have children, and
 - When a node has one child, it is a left child

- **Balanced binary tree**
 - The height of each node’s subtrees differ by at most 1.
Binary Tree ADT

- **Basic Operations**
 - Create an empty binary tree
 - Create a one-node binary tree, given an item
 - Remove all nodes from a binary tree
 - Determine whether a binary tree is empty
 - Determine what data is at a binary tree’s root

- **General Operations**
 - Create a binary tree given an item, and left/right subtrees
 - Set root item
 - Attach left or right item
 - Attach left/right subtree
 - Detach left/right subtree
Binary Tree Code

- See examples
Iterators

- Provide a general way of traversing a tree
 - Can’t use internal types like TreeNode!
 - Instead, use an iterator

- An iterator is a class whose purpose is to allow other structures to be “read” in order
 - Example (sort of): Tokenizer

- An iterator supports a set of methods
 - Constructor: specifies the data structure to iterate over
 - hasNext(): true if there is another object to iterate to
 - next(): returns the next object in the traversal
Traversing a binary tree

- Trees can be traversed in three orders
 - Pre-order: root, L, R
 - A, B, C, D, F, E
 - In-order: L, root, R
 - B, A, F, D, C, E
 - Post-order: L, R, root
 - B, F, D, E, C, A

- Order chosen depends on
 - What the tree is being used for
 - What the traversal is supposed to accomplish

- Traversal is done recursively!
 - Treat L, R as trees in their own right
 - Recursively visit them
Pre-order traversal

- Visit nodes in this order
 - Root node
 - Left subtree
 - Right subtree
- Recursive visit
- Perform operation at the leaf
 - Printing in this example

```java
void preorder() {
    System.out.println(root.value);
    if (left != null) {
        left.preorder();
    }
    if (right != null) {
        right.preorder();
    }
}
```
In-order traversal

- Visit nodes in this order
 - Left subtree
 - Root node
 - Right subtree
- Recursive visit
- Perform operation at the leaf
 - Printing in this example

```java
void inorder () {
    if (left != null) {
        left.inorder ();
    }
    System.out.println (root.value);
    if (right != null) {
        right.inorder ();
    }
}
```
Post-order traversal

- Visit nodes in this order
 - Left subtree
 - Right subtree
 - Root node
- Recursive visit
- Perform operation at the leaf
 - Printing in this example

```java
void postorder () {
    if (left != null) {
        left.postorder ();
    }
    if (right != null) {
        right.postorder ();
    }
    System.out.println (root.value);
}
```
Binary search tree

- Rule 1: left child is *less* than parent
- Rule 2: right child is *greater* than parent
- Insert a new node by
 - Following the links down
 - Attaching the new node where it “should” go
- Result:
 - All nodes in the left subtree are less than the root!
 - All nodes in the right subtree are greater than the root
Binary search tree

- The value stored in each node for comparison is a “key”
- Examples:
 - Directories
 - List of students
 - …

- Recursive definition of binary search tree
 - For each node n,
 - n’s key is greater than every key in T_L
 - n’s key is less than every key in T_R
 - T_L and T_R are binary search trees.
Searching in a binary search tree

- Searching is similar to insertion
 - Go left if less
 - Go right if more
- Can be done recursively
- Can be done non-recursively
 - Loop, setting appropriate subtree to root each time

Diagram:
- lion
 - dog
 - cat
 - egret
 - frog
 - mouse
 - marmot
- panda
Recursively Searching a Binary Search Tree

\[
\text{search(binary search tree, searchKey) } \{ \\
\text{if(\text{empty})} \\
\quad \text{// not found} \\
\text{else if(key == searchKey)} \\
\quad \text{// found} \\
\text{else if(key > searchKey)} \\
\quad \text{search(left subtree, searchKey)}; \\
\text{else} \\
\quad \text{search(right subtree, searchKey)}; \\
\}
\]
Accessing a BST in sorted order

- How can we print this tree in sorted order?
- Starting at root, we know
 - All nodes in left subtree are “less” than root
 - All nodes in right subtree are “greater” than root
 - Left & right subtrees can both be printed in sorted order
- Solution: in-order traversal!
 - Print all nodes less than root in sorted order
 - Print root
 - Print all nodes greater than root in sorted order
Binary Search Tree Operations

- Insert an item (O(\log n))
 - Search until null is reached – place the item there
- Delete an item with a given search key (O(\log n))
 - Three cases
 - N has no children – easy, set parent’s reference to null
 - N has one child – like a linked list
 - N has two children – replace with inorder successor
- Retrieve an item with a given search key (O(\log n))
 - Binary search (yay)
- Traverse the items in some order (O(n))
Balancing trees (overview)

- Binary trees are most effective when they are balanced
 - Maximum depth of any node is no more than 1 greater than minimum depth of any node
- How can we balance a tree?
 - Preserve ordering rules!
 - Rearrange tree to fix heights
- Ensure tree is balanced after each insertion
 - Prevent it from getting too far out of balance
- Use a special kind of binary tree: 2-3 tree
 - General idea: keep the tree balanced at every step
 - Details beyond the scope of this class
Saving and restoring binary trees

- What if we want to save a tree?
 - Print it out in such a way that we can restore it later
 - Provide sufficient information to reconstruct an exact copy
- Use pre-order traversal
 - Print information about each node saying whether it has left, right, neither or both subtrees
 - Print the contents of the node
- Reconstruct recursively

```
Tree buildTree () {
    read value, status
    t = new Tree (value);
    if (status == 2 ||
         status == L) {
        t.attachL(buildTree());
    }
    if (status == 2 ||
         status == R) {
        t.attachR(buildTree());
    }
    return (t);
}
```
Why save and restore trees?

- Helpful when one program creates a tree that another wants to use
 - Placement within the tree could be important!
 - Might not simply be sorted…
General Trees

- What if you want to have any number of children in a tree?
 - What data structure would you use to store the children?