
CMPS 12A - Winter 2002
Midterm 2

March 5, 2002

Name:__ID:____________________________

This is a closed note, closed book exam. Any place where you are asked to write code, you must
declare all variables that you use. However, I just want code fragments, you must not write extra
code such as a class specification or extraneous print statements.

1. [10 points] Given the following javadoc specification, show how to call and get a return value
from the function pow(). Let a equal 5, b equal 3, and store the result in c. Print out the value
that is returned.

static double pow(double a, double b)
Returns of value of the first argument raised to the power of the second
argument.

double a, b, c; 2 points
a = 5; 1 point
b = 3; 1 point
c = pow(a, b); 4 points
System.out.println(c); 2 points

2. [10 points] Write a method called circleArea() that takes as a parameter the radius of a circle
and returns its area.

public static double circleArea(double radius) { 3 points (return type, name, parame-
ter)

double area; 2 points
area = Math.PI * radius * radius; 3 points
return area; 2 points

}

1

3. [10 points] Given the following numbered lines of code

1 class Foo {
2
3 public static void main(String[] args) {
4 int a = 5;
5
6 for(int b = 0; b < 100; b++) {
7 b = a*b;
8 }
9
10 int c;
11
12 c = foo(a);
13
14 System.out.println(c);
15 }
16
17 public static double foo(int d) {
18 double e = 1/d;
19 return e;
20 }
21 }

Write the line numbers of the lines that constitute the scope of each variable:
a: 5-15 2 points

b: 6-8 2 points

c: 10-15 2 points

d:17-20 2 points

e: 18-20 2 points
2

4. [10 points] What does this program print out? Why?

class TestProgram{
public static void main(String[] args){

int a = 1, b = 2;
System.out.println(a);
System.out.println(b);
swap(a, b);
System.out.println(a);
System.out.println(b);

}

static void swap(int x, int y) {
int temp;
System.out.println(x);
System.out.println(y);
temp = x;
x = y;
y = temp;
System.out.println(x);
System.out.println(y);

}
}

It prints out:
1 1 point
2 1 point
1 1 point
2 1 point
2 1 point
1 1 point
1 1 point
2 1 point

The reason it does this is that in swap, the values of x and y are swapped, but in main the
values of a and b are not swapped because x and y are merely copies of a and b. 2 points
3

5. Recursion
a) [10 points] Write a non-recursive implementation of the pow() function from problem 1

public static int pow(int a, int b) { 2 points (correct method header)
int result = 1; 2 points (variable declaration)
for(int i = 0; i < b; i++) { 2 points (for loop construction)

result = result * a; 2 points (calculation)
}
return result; 2 points (return statement)

}

b) [10 points] Write a recursive implementation of the same function

public static int pow(int a, int b) { 2 points (method header)
if(b == 0) 2 points (test)

return 1; 2 points (base case)
else

return a*pow(a, b-1); 4 points (recursive case)
}

4

6. Arrays
a) [5 points] Declare and create storage for an array of 10 integers called foo

int[] foo; 2 points
foo = new int[10]; 3 points

b) [5 points] Write a method called bar() that takes an array of integers and adds 1 to each ele-
ment

public static void bar(int[] theArray) { 1 point
for(int i = 0; i < theArray.length; i++) { 2 points

theArray[i]++; 2 points
}

}

c) [5 points] Show how you would call bar() with the array you created as a parameter

bar(foo); 5 points

d) [5 points] After the call to bar(), is the original array changed in any way? Why?

Yes. Because when you pass an array to a method, you are passing a reference to the array,
so the formal parameter refers to the same storage as the actual parameter. 5 points

7. [10 points] Write a method called arrayMin() that takes an array of doubles as a parameter
and returns the index of the smallest element of the array.

public static int arrayMin(double[] theArray) { 2 points (method header)
int min = 0; 1 point (initializing min)
for(int i = 0; i < theArray.length; i++) { 2 points (looping through the array)

if(theArray[i] < theArray[min]) { 3 points (setting min)
min = i;

}
}
return min; 2 points (returning min)

}

5

8. [10 points] Conway’s Life program simulates cell life. It is “played” on a 2D array of elements
that represent cells. It has three basic rules:

Rule 1.If a cell is dead and it has exactly three neighbors that are alive, it comes to life in the
next generation.

Rule 2.If a cell is alive and it has fewer than 2 or more than 3 neighbors that are alive, it dies
in the next generation.

Rule 3.Otherwise, the cell will be the same in the next generation as it is in the current gener-
ation.

Suppose that we have a life game board that is a 2D array of booleans, where the boolean value
false means that a cell is dead and true means that a cell is alive. Write a method called live() that
takes the board as a parameter and returns an updated board that shows what it looks like after
exactly one generation.

public static void live(boolean[][] board) { 1 point (passing 2D array)
boolean[][] boardCopy = board.clone(); 1 point (copying board)

for(int i = 0; i < board.length; i++) { 2 points (traversing board)
for(int j = 0; j < board[i].length; j++) {

int n = neighbors(boardCopy, i, j);

if(board[i][j] == false && n == 3) 2 points (finding state of cells)
board[i][j] = true;

else if(board[i][j] == true && n != 2 && n != 3)
board[i][j] = false;

}
}

}

public static int neighbors(boolean[][] board, int i, int j) {2 points (counting neighbors)
int n = 0;

if(i >0 && j > 0 && board[i-1][j-1]) n++; 2 points (dealing with edges)
if(i > 0 && board[i-1][j]) n++;
if(i > 0 && j < board[i].length-1 && board[i-1][j+1]) n++;
if(i < board.length-1 && j > 0 && board[i+1][j-1]) n++;
if(i < board.length-1 && board[i+1][j]) n++;
if(i < board.length-1 && j < board[i].length-1 && board[i+1][j+1]) n++;
if(j > 0 && board[i][j-1]) n++;
if(j < board.length[i]-1 && board[i][j+1]) n++;

return n;
}

6

