
Objects: Data Abstraction

n  In Object-Oriented programming
languages like Java, objects are used to
represent data

n  A class defines a type of object,
including
n  its data
n  its permissible operations

n  Once a type is defined, objects of that
type can be declared and used

Example: Planet

n  Suppose that we want to represent
planets in Java

n  We can define a class called Planet
n  Data: diameter, mass, orbit, orbital period,

location at a given time, ...
n  Methods: setDiameter(), setMass(), etc.,

getDiameter(), getMass(), etc.

String: Using a Standard Class

n  Different objects have different
methods for manipulating their data

n  The specific methods are determined
based on what makes sense for that
type of object

n  For Strings: length, concatenation,
comparison, substring, substring
comparison, ...

Example: Palindromes

n  Two String methods:
n  length() – returns the length of the string
n  charAt() – returns the character at a given

position in the string

n  Palindrome – a word that reads the
same forward or backward
n  Examples: eye, madam, radar, ...

Algorithm

1.  Get a word from the user
2.  Compare the first and last characters

1.  If they are different, return false
2.  Otherwise, repeat with the second and

second to the last, etc.

3.  If the characters all match, return true

Algorithm 2

n  Set left to the index of the first (leftmost) character	

n  Set right to index the last (rightmost) character	

n  While left is less than right	

n  Compare the left character with the right character	

n  If they are not equal return false	

n  Increment left	

n  Decrement right	

n  Return true	

public class Palindrome {"
 public static void main(String[] args) {"
 Scanner in = new Scanner(System.in); "
" " String str = in.next();"

 System.out.println(str +“ “ +isPalindrome(str));"
 }"
 static boolean isPalindrome(String s) {"
 int left =0, right =s.length()-1;"
 while (left < right) {"
 if (s.charAt(left) != s.charAt(right))"
 return false;"
 left++;"
 right--;"
 }"
 return true;"
 }}"

Methods

n  Each type of object supports a
specified set of methods

n  The methods are called for a specific
object and have direct access to that
object’s data without having to pass
the object as a parameter
String s;"
s.length();"

String Methods
n  boolean equals(Object anObject)	

n  Compares this string with another object	

n  int length()	

n  Number of characters in this string	

n  char charAt(int index)	

n  Returns the character at the position index withi
this string	

String Methods II

n  int compareTo(String str)	

n  Returns an integer value, based on lexicographic order	

n  int indexOf(int ch)	

n  Index of where the ch occurs in this string or -1 if not

present	

n  int indexOf(String str)	

n  Index of the first character of a matching substring str	

n  String concat(String str)	

n  Concatenates this string instance with str and returns
the result	

String Methods III

n  String toLowerCase()	

n  Returns a copy of this string but in all lowercase	

n  String toUpperCase()	

n  Returns a copy of this string but in all uppercase	

n  static String valueOf(type prim)	

n  Returns the String representation of primitive value

prim ,where type can be any primitive	

public class StringTest {"
 public static void main(String [] args){"
 String str1 ="aBcD",str2 ="abcd",str3;"
 System.out.println(str1.equals(str2));"
 System.out.println(str1.length());"
 System.out.println(str1.charAt(1));"
 System.out.println(str1.compareTo("aBcE"));"
 System.out.println(str1.compareTo("aBcC"));"
 System.out.println(str1.compareTo("aBcD"));"
 System.out.println(str1.indexOf('D'));"
 System.out.println(str1.indexOf("Bc"));"
 System.out.println(str1.indexOf("zz"));"
 System.out.println(str1.concat("efg"));"
 }"
}"

public class StringTest {"
 public static void main(String [] args){"
 String str1 ="aBcD",str2 ="abcd",str3;"
 str3 =str1.toLowerCase();"
 System.out.println(str3);"
 str3 =str1.toUpperCase();"
 System.out.println(str3);"
 System.out.println(str1);"
 str3 =String.valueOf(123);"
 System.out.println(str3.equals("123"));"
 }"
}"

StringBuffer

n  Strings are immutable
n  Once you create one, you can’t change it
n  You can only return a new string that is a

changed version of the old one

n  StringBuffers are mutable
n  You can change them: insert(), reverse(),

replace(), setCharAt(), setLength(),
deleteCharAt(), append(), ...

Elements of a Simple Class

n  Data
n  called instance variables, data members,

fields

n  Methods
n  called instance methods, procedure

members, member functions

n  Together these implement a level of
abstraction for some particular type of
data

Defining a new type

n  First describe the data that will be
stored in objects of this type

n  Then describe the operations that will
be supported on objects of that type

Example: Counter
n  We often want to count things, why not

create an abstraction for doing it?
n  Advantage: you can reuse it in different

places in the program, or even in other
programs

n  Data:
n  Current value of the counter (initially zero)

n  Operations:
n  Reset, Increment, Decrement, Get the

current value

Counter.java

class Counter {

 int value;

 void reset() { value = 0; }

 int readValue() { return
value; }

 void increment() { value =
value +1; }

 void decrement() { value =
value –1; }

}

Using the Counter

Counter c1 = new Counter();"
Counter c2 = new Counter();"
c1.reset();"
c2.reset();"
c1.increment();"
c1.increment();"
System.out.println(c1.readValue());"
System.out.println(c2.readValue());"

Abstract Data Types

n  Classes allow us to implement Abstract Data
Types (ADTs) – an abstraction representing a
particular kind of data
n  The data and methods combine to implement the

functionality we desire or expect for this type of
data

n  The implementation details are hidden from the
user

n  The implementation is all in one place
n  The type can be used in many different places in

the program or in many programs

Important Details
n  Each Counter object has its own copy of

the member variables
n  In this case, the integer variable called

value
n  When the methods are called, the call is

of the form
<objectname>.<methodname>()

n  The object itself is an implicit parameter
to the method, so that any references
to the data access that object’s copy of
the member variables

More Examples

n  Complex numbers, vectors, matrices,
time/date information, address
information, shapes (circle, square,
rectangle, oval, triangle), a file, a
keyboard, a game board (checkers,
chess, tictactoe), a game piece, a
character string, a die, a deck of
cards

n  Think of some more
n  Let’s implement some of them

Data Hiding: public vs. private

n  In general, each class is in a separate
file
n  The name of the file matches the name of

the class (with .java at the end)
n  All classes in the same directory (or file)

are part of the same package
n  Whether or not a method is in the same

class or package as the data or method
it is accessing affects what it can see
and do

Public and Private

n  Public data and methods are preceded
by the keyword public

n  Private data and methods are preceded
by the keyword private

n  By default, everything is semi-private
(my term)
n  If you don’t specify public or private, you

get this default behavior

Public and Private in Action

n  Private data and methods are accessible
only by methods in the same class

n  Semi-private data and methods are
accessible by any method in the same
class or the same package

n  Public data and methods are accessible
by any method, regardless of whether
or not it is in the same class or package

Example
//Counter.java -a simple counter"
public class Counter {"
 //instance variables - hidden"
 private int value;"
 "
 //methods - exposed"
 public void reset() {value = 0; }"
 public int get() { return value; }"
 public void click() {value = value +1; }"
}"

What If The Data Wasn’t
Private

Counter foo = new Counter();"
"
foo.reset();"
foo.click();"
foo.click();"
foo.value = 17;"
int a = foo.get(); // returns the wrong value"

Constructors

n  A constructor is a special method in a
class

n  It has the same name as the class
n  It is automatically called when an object

of that type is created
n  Constructors are usually used to set

data in the object to an initial value
n  Constructors can take parameters

Example
//Counter.java -a simple counter"
public class Counter {"
 //instance variables - hidden"
 private int value;"
 "
 //methods – exposed"
 public void Counter() { value = 0; }"
 public void reset() { value = 0; }"
 public int get() { return value; }"
 public void click() { value = value +1; }"
}"

Example 2
public class Complex {"
 private double real;"
 private double imaginary"
 public void Complex() { real = 0; imaginary = 0;}"
 public void Complex(double r, double i) {"
 real = r; imaginary = i;"
 }"
 public double getReal() { return real; }"
 public double getImaginary) { return imaginary; }"
}"

Using Constructors

Complex a = new Complex();"
Complex b = new Complex(1, 5.7);"
Complex c = new Complex(1,0);"

Static Fields and Methods

n  Static fields and methods are preceded
by the keyword static

n  Unlike other methods, static methods
are not associated with a specific object

n  Static methods are called by using the
class name and the method name
n  main(); and Math.random();"

Static Variables

n  Static data members are associated
with the class rather than a particular
object of that type

n  Static data members are accessed like
static methods: class name followed by
field name
n  Example: Math.PI

n  Sometimes called class variables

Example
public class Counter {
 //instance variables - hidden
 private int value;
 private static int howMany = 0;

 //methods - exposed
 public Counter() { howMany++; }
 public void reset() { value =0; }
 public int get() { return value; }
 public void click() { value =
value + 1; }

 public static int howMany()
{ return howMany; }

}

class CounterTest2 {
 public static void main(String[]
args){

System.out.println(Counter.howMany())
;

 Counter c1 = new Counter();
 Counter c2 = new Counter();
 c1.click();
 c2.click();
 c2.click();
 System.out.println("Counter1
value is " + c1.get());

 System.out.println("Counter2
value is "+ c2.get());

System.out.println(Counter.howMany())
;

 }
}

Recap: Calling Methods

n  There are three ways to call a method
depending on
n  whether the method is in the same class or

not
n  whether the method is an instance method

or a class method

The Three Ways to Call a
Method

n  In the same class: you just use the method
name followed by any parameters in
parenthesis
n  int a = foo(); // foo is a method in this class"

n  An instance method: you have to call it for a
particular object
n  String s = “abc”; int a = s.length();"

n  A class method: call it with the class name
n  int a = Math.random();

class Change {"
 private int dollars,quarters,dimes,pennies;"
 private double total;"
 "
 Change(int dl,int q,int dm,int p) {"
 dollars = dl;"
 quarters = q;"
 dimes = dm;"
 pennies = p;"
 total =dl + 0.25*q + 0.1*dm + 0.01*p;"
 }"

 static Change makeChange(double paid,"
 double owed) {"
 double diff = paid - owed;"
 int dollars, quarters, dimes, pennies;"
"
 dollars = (int)diff;"
 pennies = (int)((diff -dollars)*100);"
 quarters = pennies /25;"
 pennies -= 25 *quarters;"
 dimes = pennies /10;"
 pennies -= 10 *dimes;"
 return new Change(dollars, quarters, "
 dimes,pennies);"
 }"

 public String toString() {"
 return ("$“ + total +"\n“"
 + dollars + “ dollars \n""
 + quarters + “ quarters \n""
 + dimes + “ dimes \n""
 + pennies + “ pennies \n");"
 }"
}"

Using the Class
//ChangeTest.java"
public class ChangeTest {"
 public static void main(String [] args){"
 double owed = 12.37;"
 double paid = 15.0;"
 System.out.println("You owe “ + owed);"
 System.out.println("You gave me “ + paid);"
 System.out.println("Your change is “ +"
 Change.makeChange(paid, owed));"
 }"
}"

Accessing Another Objects
Private Fields

//ChangeTest2.java"
public class ChangeTest2 {"
 public static void main(String[] args){"
 Change c1 = new Change(10,3,4,3);"
 Change c2 = new Change(7,2,2,1);"
 Change sum = c1.add(c2);"
 System.out.println(sum);"
 }"
}"

The add() method

public Change add(Change addend) {"
 Change result = new Change("
 dollars + addend.dollars,"
 quarters + addend.quarters,"
 dimes + addend.dimes,"
 pennies + addend.pennies);"
 return result;"
}"

A static add() method

public static Change add(Change augend,"
 Change addend) {"
 Change result = new Change("
 augend.dollars + addend.dollars,"
 augend.quarters + addend.quarters,"
 augend.dimes + addend.dimes,"
 augend.pennies + addend.pennies);"
 return result;"
}"

How it is called

public class ChangeTest3 {

 public static void
main(String[] args){

 Change c1 = new
Change(10,3,4,3);

 Change c2 = new
Change(7,2,2,1);

 Change sum = Change.add(c1,
c2);

 System.out.println(sum);

 }

}

Passing Objects: Reference
Types

n  Passing an object to a method is
different than passing a primitive type

n  Primitive types are call-by-value
n  The called method gets a copy of the

passed object

n  Objects are call-by-reference
n  The called method gets a copy of the

reference to the object, which refers to the
same object!

What’s Really Going On Here
int a;

Complex foo;
foo

a

foo = new Complex();

a = 5;
5

Call-by-reference

n  The called method gets a copy of the
reference!

n  Because the called method has a
reference to the same object, any
changes to the object in a method will
change the actual object!

Example
// Object parameters can be modified"
class PassingReferences {"
 public static void main(String [] args){"
 StringBuffer sbuf =new StringBuffer("testing");"
 System.out.println("sbuf is now "+ sbuf); "
 modify(sbuf);"
 System.out.println("sbuf is now "+ sbuf);"
 }"
 static void modify(StringBuffer sb) {"
 sb.append(",1 2 3"); "
 }"
}"

Example
// You can't modify the actual arg"
class ModifyParameters {"
 public static void main(String[] args) {"
 StringBuffer sbuf = new StringBuffer("testing");"
 System.out.println("sbuf is now "+ sbuf);"
 modify(sbuf);"
 System.out.println("sbuf is now "+ sbuf);"
 }"
 static void modify(StringBuffer sb) {"
 sb = new StringBuffer("doesn't work");"
 }"
}"

Scope

n  Recall: a local variable (defined in a
method) is only accessible within that
method
n  And, it is only accessible after the point at

which it is defined in the method
n  Instance and class variables are

accessible from within any method in
the class
n  Before or after the point at which they are

defined in the class

Eclipsing an instance or class
variable

n  When a local variable (in a method) has the
same name as an instance or class variable,
the local variable eclipses the class variable
n  References to that name in the method will refer

to the local variable

n  An eclipsed class variable can be accesses
using the class name

n  An eclipsed instance variable can be accessed
using this

// Scope2.java:instance vs. class vs. local scope"
class Scope2 {"
 static int x =1;"
 int y = 2;"
 public static void main(String[] args){"
 int x = 3, y = 4;"
 System.out.println(“local x = “ + x);"
 System.out.println("class x =“ + Scope2.x);"
 System.out.println(“local y = “ + y);"
 System.out.println(“instance y =“ + this.y);"
 }"
}"

Change(int dollars,int quarters,int dimes,int pennies) {"
 this.dollars =dollars;"
 this.quarters =quarters;"
 this.dimes =dimes;"
 this.pennies =pennies;"
 total = dollars + 0.25 *quarters + 0.1 *dimes +

pennies;"
}"

Keyword final and Class
Constants

n  It is usually a bad idea to make instance
and class variables public
n  It is better to provide accessor methods
n  This allows us to guarantee certain

conditions about the data

n  However, there is one type of class
variable that is commonly made public:
constants
n  Immutable variables with special values

Examples

n  Math.PI
n  Integer.MAXINT
n  Note: generally written all uppercase
n  Defined with the keyword final

public static final double PI = 3.14159265;"
n  Any attempt to modify a constant will

result in an error

Why use these

n  Constants are only defined once
n  Some numbers, such as pi, are used very

often

n  Constants allow us to name a value
n  Which is clearer: 60 or

SECONDSPERMINUTE?

Arrays of Objects

n  Just as we can have arrays of primitive types,
we can also have arrays of objects

n  Recall that
n  When we declare an array we have to use new to

create the storage for the array
n  When we create an object we have to use new to

create the storage for the object

n  So, when we create an array of objects we
have to use new twice; once for the array
and once for the objects.

Example

int[] foo;"
foo = new int[15];"
"
Complex[] bar;"
bar = new Complex[15];"
for(int i = 0; i < bar.length; i++)"
 bar[i] = new Complex();"
"
n  And, the book has a better Card class than mine"

class Suit {"
 public static final int CLUBS = 1;"
 public static final int DIAMONDS = 2;"
 public static final int HEARTS = 3;"
 public static final int SPADES = 4;"
 int suitValue;"
 Suit(int i){ suitValue = i; }"
 public String toString() {"
 switch (suitValue) {"
 case CLUBS: return "clubs";"
 case DIAMONDS:return "diamonds";"
 case HEARTS:return "hearts";"
 case SPADES:return "spades";"
 default:return "error";"
 }}}"

class Pips {"
 int p;"
"
 Pips(int i) { p = i; }"
"
 public String toString() {"
 if (p > 1 && p <11)"
 return String.valueOf(p);"
 else switch(p) {"
 case 1: return "Ace";"
 case 11: return "Jack";"
 case 12: return "Queen";"
 case 13: return "King";"
 default: return "error";"
}}}"

class Card {"
 Suit suit;"
 Pips pip;"
"
 Card(Suit s,Pips p) { suit =s; pip =p; }"
"
 Card(Card c) { suit = c.suit; pip = c.pip;}"
"
 public String toString() {"
 return pip.toString()+“ of “+suit.toString();"
 }"
}"

class Deck {"
 Card[] deck;"
"
 Deck() {"
 deck = new Card [52];"
"
 for (int i = 0; i < deck.length; i++)"
 deck[i] = new Card(new Suit(i /13 +1),"
 new Pips(i %13 +1));"
 }"

 public void shuffle() {"
 for (int i = 0; i < deck.length; i++) { "
 int k =(int)(Math.random()*52);"
 Card t = deck[i];"
 deck[i] = deck[k];"
 deck[k] = t;"
 }"
 }"

 public String toString(){"
 String t ="";"
"
 for (int i = 0; i < 52; i++)"
 if ((i +1)%5 ==0)"
 t = t + “\n“ + deck [i];"
 else"
 t = t +deck [i];"
"
 return t;"
 }"
}"

public class CardTest {"
 public static void main(String args[]) {"
 Deck deck = new Deck();"
"
 System.out.println("\nNew Shuffle \n"+deck);"
"
 deck.shuffle();"
"
 System.out.println("\nNew Shuffle \n"+deck);"
"
 deck.shuffle();"
"
 System.out.println("\nNew Shuffle \n"+deck);"
 }"
}"

