i Objects: Data Abstraction

= In Object-Oriented programming
languages like Java, objects are used to
represent data

= A class defines a type of object,
including
= its data
= its permissible operations

= Once a type is defined, objects of that
type can be declared and used

i Example: Planet

= Suppose that we want to represent
planets in Java

s We can define a class called Planet

= Data: diameter, mass, orbit, orbital period,
location at a given time, ...

= Methods: setDiameter(), setMass(), etc.,
getDiameter(), getMass(), etc.

i String: Using a Standard Class

= Different objects have different
methods for manipulating their data

= The specific methods are determined
based on what makes sense for that
type of object

= For Strings: length, concatenation,
comparison, substring, substring
comparison, ...

i Example: Palindromes

= Two String methods:
= length() — returns the length of the string

= charAt() — returns the character at a given
position in the string

= Palindrome — a word that reads the
same forward or backward

»« Examples: eye, madam, radar, ...

i Algorithm

1. Get a word from the user

2. Compare the first and last characters
1. If they are different, return false

>. Otherwise, repeat with the second and
second to the last, etc.

3. If the characters all match, return true

i Algorithm 2

m Set left to the index of the first (leftmost) character
= Set right to index the last (rightmost) character
m While left 1s less than right

= Compare the left character with the right character

= [f they are not equal return false
= Increment left
= Decrement right

m Return true

public class Palindrome {
public static void main(String[] args) {
i Scanner in = new Scanner(System.in);
String str = in.next();
System.out.printin(str +"
¥
static boolean isPalindrome(String s) {
int left =0, right =s.length()-1;
while (left < right) {
if (s.charAt(left) = s.charAt(right))
return false;
left++;
right--;
Y

return true;

1

1

‘ +isPalindrome(str));

i Methods

= Each type of object supports a
specified set of methods

= The methods are called for a specific
object and have direct access to that
object’ s data without having to pass
the object as a parameter
String s;
s.length();

String Methods

= boolean equals(Object anObject)
= Compares this string with another object

= int length()

= Number of characters in this string

= char charAt(int index)

= Returns the character at the position index withi
this string

String Methods 11

= Int compareTo(String str)
= Returns an integer value, based on lexicographic order
= int indexOf(int ch)

= Index of where the ch occurs in this string or -1 if not
present

= Int indexOf(String str)
= Index of the first character of a matching substring str

= String concat(String str)

= Concatenates this string instance with str and returns
the result

i String Methods 111

» String toLowerCase()

= Returns a copy of this string but in all lowercase

n String toUpperCase()

= Returns a copy of this string but in all uppercase

m static String valueOf(¢ype prim)

= Returns the String representation of primitive value
prim ,where type can be any primitive

public class StringTest {

public static void main(String [] argsX
i String str1 ="aBcD",str2 ="abcd",str3;

System-outprintin(stri-equals(str2));

System.out.printin(str1.length());
System.out.printin(str1.charAt(1));
System.out.printin(str1.compareTo("aBcE"));
System.out.printin(str1.compareTo("aBcC"));
System.out.printin(str1.compareTo("aBcD"));
System.out.printin(str1.indexOf('D"));
System.out.printin(str1.indexOf("Bc"));
System.out.printin(str1.indexOf("zz"));
System.out.printin(str1.concat("efg"));

public class StringTest {
public static void main(String [] argsX
i String str1 ="aBcD",str2 ="abcd",str3;

str3 =stri1.toLowerCase();
System.out.printin(str3);

str3 =str1.toUpperCase();
System.out.println(str3);
System.out.printin(str1);

str3 =String.valueOf(123);
System.out.printin(str3.equals("123"));

i StringBuffer

= Strings are immutable
= Once you create one, you can’ t change it

= You can only return a new string that is a
changed version of the old one

= StringBuffers are mutable

= You can change them: insert(), reverse(),
replace(), setCharAt(), setLength(),
deleteCharAt(), append(), ...

i Elements of a Simple Class

s Data

» called instance variables, data members,
flelds

= Methods

» Called instance methods, procedure
members, member functions

= Together these implement a level of
abstraction for some particular type of
data

i Defining a new type

= First describe the data that will be
stored in objects of this type

= Then describe the operations that will
be supported on objects of that type

Example: Counter

= We often want to count things, why not
create an abstraction for doing it?

= Advantage: you can reuse it in different
places in the program, or even in other
programs

= Data:
» Current value of the counter (initially zero)

= Operations:

= Reset, Increment, Decrement, Get the
current value

i Counter.java

class Counter {
1nt value;
void reset() { value = 0; }

1nt readValue() { return
value; }

voild 1ncrement() { value
value +1; }

voild decrement() { value
value -1: %

i Using the Counter

Counter ¢c1 = new Counter();
Counter c2 = new Counter();
c1.reset();

c2.reset();

cl.increment();

cl.increment();
System.out.printin(c1.readValue());
System.out.printin(c2.readValue());

i Abstract Data Types

= Classes allow us to implement Abstract Data
Types (ADTs) — an abstraction representing a
particular kind of data

= The data and methods combine to implement the
functionality we desire or expect for this type of
data

= The implementation details are hidden from the
user

= The implementation is all in one place

= The type can be used in many different places in
the program or in many programs

Important Details

= Each Counter object has its own copy of
the member variables
= In this case, the integer variable called
value
= When the methods are called, the call is

of the form
<objectname>.<methodname>()

= The object itself is an implicit parameter
to the method, so that any references
to the data access that object’ s copy of
the member variables

i More Examples

= Complex numbers, vectors, matrices,
time/date information, address
information, shapes (circle, square,
rectangle, oval, triangle), a file, a
keyboard, a game board (checkers,
chess, tictactoe), a game piece, a
character string, a die, a deck of
cards

= Think of some more
= Let’ s implement some of them

i Data Hiding: public vs. private

= In general, each class is in a separate
file
= The name of the file matches the name of
the class (with .java at the end)

= All classes in the same directory (or file)
are part of the same package

= Whether or not a method is in the same
class or package as the data or method
it is accessing affects what it can see
and do

i Public and Private

= Public data and methods are preceded
by the keyword public

= Private data and methods are preceded
by the keyword private

= By default, everything is semi-private
(my term)

= If you don’ t specify public or private, you
get this default behavior

i Public and Private in Action

= Private data and methods are accessible
only by methods in the same class

= Semi-private data and methods are
accessible by any method in the same
class or the same package

= Public data and methods are accessible
by any method, regardless of whether
or not it is in the same class or package

i Example

//Counter.java -a simple counter

public class Counter {
//instance variables - hidden
private int value;

//methods - exposed

public void reset() {value = 0; }

public int get() { return value; }

public void click() {value = value +1; }

What If The Data Wasn' t

i Private

Counter foo = new Counter();

foo.reset();

foo.click();

foo.click();

foo.value = 17;

int a = foo.get(); // returns the wrong value

i Constructors

= A constructor is a special method in a
class

s It has the same name as the class

= It is automatically called when an object
of that type is created

= Constructors are usually used to set
data in the object to an initial value

= Constructors can take parameters

i Example

//Counter.java -a simple counter

public class Counter {
//instance variables - hidden
private int value;

//methods — exposed

public void Counter() { value = 0; }
public void reset() { value = 0; }

public int get() { return value; }

public void click() { value = value +1; }

i Example 2

public class Complex {
private double real;
private double imaginary
public void Complex() { real = 0; imaginary = 0;}
public void Complex(double r, double i) {
real =r; imaginary = i,
Y
public double getReal() { return real; }
public double getimaginary) { return imaginary; }

‘-L Using Constructors

Complex a = new Complex();
Complex b = new Complex(1, 5.7);
Complex ¢ = new Complex(1,0);

i Static Fields and Methods

= Static fields and methods are preceded
by the keyword static

= Unlike other methods, static methods
are not associated with a specific object

= Static methods are called by using the
class name and the method name

= main(); and Math.random();

i Static Variables

= Static data members are associated
with the class rather than a particular
object of that type

s Static data members are accessed like
static methods: class nhame followed by
field name

=« Example: Math.PI
s Sometimes called class variables

Example

public class Counter {
//instance variables - hidden
private int value;
private static int howMany = O;

//methods - exposed

public Counter() { howMany++; }
public void reset() { value =0; }
public 1int get() { return value; }

public void click() { value =
value + 1; }

public static int howMany()
{ return howMany; }

args){

class CounterTest?2 {
i public static void main(Stringl[]

System.out.printin(Counter.howMany())

Counter cl = new Counter();
Counter c2 = new Counter();
cl.click(Q);
c2.click();
c2.click();

System.out.printin("Counterl
value 1s " + cl.get());

System.out.println("Counter?
value 1s "+ c2.get());

i Recap: Calling Methods

= There are three ways to call a method
depending on
= whether the method is in the same class or
not

= Whether the method is an instance method
or a class method

The Three Ways to Call a

i Method

= In the same class: you just use the method
name followed by any parameters in
parenthesis
= inta =foo(); // foo is a method in this class

= An instance method: you have to call it for a
particular object
= String s = “abc”; int a = s.length();

= A class method: call it with the class hame
« int a = Math.random();

class Change {

private int dollars,quarters,dimes,pennies;
private double total;

Change(int dl,int q,int dm,int p) {
dollars = dlI;
quarters = q;
dimes = dm;
pennies = p;
total =dl + 0.25*q + 0.1*dm + 0.01%*p;

static Change makeChange(double paid,

double owed) {
double diff = paid - owed;

int dollars, quarters, dimes, pennies;

dollars = (int)diff;

pennies = (int)((diff -dollars)*100);

guarters = pennies /25;

pennies -= 25 *quarters;

dimes = pennies /10;

pennies -= 10 *dimes;

return new Change(dollars, quarters,
dimes,pennies);

public String toString() {

return ("$" + total +"\n"”
+ dollars + “ dollars \n"

+ quarters + “ quarters \n"
+ dimes + “ dimes \n"
+ pennies + * pennies \n");

i Using the Class

//ChangeTest.java
public class ChangeTest {
public static void main(String [] argsX
double owed = 12.37;
double paid = 15.0;
System.out.printin("You owe “ + owed);
System.out.printin("You gave me “ + paid);
System.out.printin("Your change is “ +
Change.makeChange(paid, owed));

Accessing Another Objects

‘.L Private Fields

//ChangeTest2.java
public class ChangeTest2 {
public static void main(String[] argsX

C
C
C

nange c1 = new Change(10,3,4,3);
nange c2 = new Change(7,2,2,1);

nange sum = c1.add(c2);

System.out.printin(sum);

i The add() method

public Change add(Change addend) {
Change result = new Change(
dollars + addend.dollars,
qguarters + addend.quarters,
dimes + addend.dimes,
pennies + addend.pennies);

return result;

i A static add() method

public static Change add(Change augend,
Change addend) {

Change result = new Change(
augend.dollars + addend.dollars,
augend.quarters + addend.quarters,
augend.dimes + addend.dimes,
augend.pennies + addend.pennies);

return result;

i How it is called

public class ChangeTest3 {

public static void
main(String[] args){

Change cl = new
Change(10,3,4,3);

Change c2 = new
Change(7,2,2,1);

Change sum = Change.add(cl,
c2);

System.out.printlin(sum) ;

Passing Objects: Reference

i Types

= Passing an object to a method is
different than passing a primitive type
= Primitive types are call-by-value

= The called method gets a copy of the
passed object

= Objects are call-by-reference

= The called method gets a copy of the
reference to the object, which refers to the
same object!

What' s Really Going On Here

Int a;
a S
a=2>3;
foo
Complex foo;

foo = new Complex();

i Call-by-reference

= The called method gets a copy of the
reference!

= Because the called method has a
reference to the same object, any
changes to the object in a method will
change the actual object!

Example

Object parameters can be modified
class PassingReferences {

public static void main(String [] argsX
StringBuffer sbuf =new StringBuffer("testing");
System.out.printin("sbuf is now "+ sbuf);
modify(sbuf);
System.out.printin("sbuf is now "+ sbuf);

Y

static void modify(StringBuffer sb) {
sb.append(”,1 2 3");

}

Example

You can't modify the actual arg
class ModifyParameters {

public static void main(String[] args) {
StringBuffer sbuf = new StringBuffer("testing");
System.out.printin("sbuf is now "+ sbuf);
modify(sbuf);
System.out.printin("sbuf is now "+ sbuf);

Y

static void modify(StringBuffer sb) {
sb = new StringBuffer("doesn't work");

}

i Scope

= Recall: a local variable (defined in a
method) is only accessible within that
method
= And, it is only accessible after the point at

which it is defined in the method

= Instance and class variables are
accessible from within any method in
the class

= Before or after the point at which they are
defined in the class

Eclipsing an instance or class

i variable

= When a local variable (in a method) has the
same name as an instance or class variable,
the local variable eclipses the class variable
= References to that name in the method will refer

to the local variable

= An eclipsed class variable can be accesses
using the class name

= An eclipsed instance variable can be accessed
using this

// Scope2.java:instance vs. class vs. local scope

lass Scope2 {
static int x =1;

Inty =2;
public static void main(String[] args){
intx =3,y =4,

1

(“local x = “ + X);
("class x =" + Scope2.x);
(“localy =" +v);
(“instance y =" + this.y);

System.out.printin
System.out.printin
System.out.println
System.out.println

Change(int dollars,int quarters,int dimes,int pennies) {
this.dollars =dollars;
this.quarters =quarters;
this.dimes =dimes;
this.pennies =pennies;

total = dollars + 0.25 *quarters + 0.1 *dimes +
pennies;

Keyword final and Class
i Constants

= It is usually a bad idea to make instance
and class variables public

» It is better to provide accessor methods

= This allows us to guarantee certain
conditions about the data
= However, there is one type of class
variable that is commonly made public:
constants

« Immutable variables with special values

i Examples

= Math.PI
= Integer.MAXINT
= Note: generally written all uppercase

= Defined with the keyword final
public static final double Pl = 3.14159265;

= Any attempt to modify a constant will
result in an error

i Why use these

= Constants are only defined once

= Some numbers, such as pi, are used very
often

s Constants allow us to name a value

= Which is clearer: 60 or
SECONDSPERMINUTE?

i Arrays of Objects

= Just as we can have arrays of primitive types,
we can also have arrays of objects

s Recall that

= When we declare an array we have to use new to
create the storage for the array

= When we create an object we have to use new to
create the storage for the object
= SO0, when we create an array of objects we
have to use new twice; once for the array
and once for the objects.

i Example

int[] foo;
foo = new int[15];

Complex][] bar;

bar = new Complex[15];

for(inti = 0; i < bar.length; i++)
bar[i] = new Complex();

= And, the book has a better Card class than mine

class Suit {
public static final int CLUBS = 1;
public static final int DIAMONDS = 2;
public static final int HEARTS = 3;
public static final int SPADES = 4;
int suitValue;
Suit(int i){ suitValue =i; }
public String toString() {

switch (suitValue) {
case CLUBS: return "clubs";

case DIAMONDS:return "diamonds";

case HEARTS:return "hearts";
case SPADES:return "spades";
default:return "error";

111

class Pips{

int p;
i‘Vm_S(WWRT)ﬂ;}

public String toString() {
if(p>1&& p<i1)
return String.valueOf(p);
else switch(p) {
case 1:return "Ace";
case 11: return "Jack";
case 12: return "Queen";
case 13: return "King";
default: return "error";

1

class Card{

Suit suit;
Pips pip;

Card(Suit s,Pips p) { suit =s; pip =p; }

Card(Card c) { suit = c.suit; pip = c.pip;}

public String toString() {
return pip.toString()+“ of “+suit.toString();

}
}

class Deck {

i Card[] deck;

Deck() {
deck = new Card [52];

for (inti = 0; I < deck.length; i++)
deck[i] = new Card(new Suit(i /13 +1),
new Pips(i %13 +1));

public void shuffle() {
i for (inti = 0: i < deck.length: i++) {
iInt K =(int)(Math.random()*52);
Card t = deck[i];
deck]i] = deck[k];
deck[k] = t;

public String toString(){

i String t ="";

for (int1=0;i<52; i++)
If ((I +1)°/05 ==)
t=t+ "\n" + deck [i];
else
t =t +deck [i];

return {;

public class CardTest {

public static void main(String args]) {
i Deck deck = new Deck();

System.out.printin("\nNew Shuffle \n"+deck);

deck.shuffle();

System.out.printin("\nNew Shuffle \n"+deck);

deck.shuffle();

System.out.printin("\nNew Shuffle \n"+deck);

