
Arrays
n  So far we have been dealing with

single data items
n  What if you want to handle multiple

related data items of the same type?
n  An array is a container that holds a

related group of values of the same
type
n  The grades for this class
n  The average daily temps in Santa Cruz
n  Etc.

Details

n  Arrays have a fixed size that specifies
how many data values they can hold

n  The elements in an array are numbered
0 through n-1, where n is the size of
the array

n  Element 0 is the first element in any
array
n  This has to do with the way that arrays are

stored in memory

Declaring Arrays

n  [] indicates that you are declaring an array
n  For any type T in java, T[] denotes an array

of that type
n  Declaring a variable: int foo;"
n  Declaring an array: int[] foo;"

n  Any type can be made into an array
int[] foo;"
String[] bar;"
char[] list;"
double[] temps;"

Allocating Elements

n  After declaring the array, you have to allocate
the elements of the array
<arrayVariable> = new <type> [<size>];

n  You must allocate the elements before using
the array

n  Once the elements are allocated, the array
size is fixed (i.e. it can’t be changed)
n  But you can destroy and allocate a new array with

the same name

Examples

int[] foo;"
foo = new int[10];"
"
double[] bar;"
bar = new double[100];"
"
String[] names;"
names = new String[116];"

More Examples

int[] foo = new int[10];"
"
double[] temps = new double[365];"
"
String[] names = new String[1000];"

Indexing an Array Element

n  The elements of an array are accessed
(indexed) by
<arrayname>[<index>]
n  Where <index> is less than the size of the

array
n  The result is just a variable of the original

type

Examples

int[] foo = new int [100];"
foo[0] = 0;"
foo[5] = 73; "
int a = foo[99];"
foo[17] = foo[12];"
System.out.println(“foo[9] = “ + foo[9]);"

What’s Really Going On Here
int a;

int[] foo;

foo[2] = 5;

foo

a

foo = new int[3]
5

a = 5;
5

Array Initialization

n  One step at a time
int[] a;"
a = new int[2];"
a[0] = 37;"
a[1] = 12;"

n  All at once
int[] a = {37, 12};"

//ArraySum.java -sum the elements in an array and"
//compute their average"
class ArraySum {"
 public static void main(String [] args) {"
 int[] data = {11,12,13,14,15,16,17};"
 int sum = 0;"
 double average;"
 for (int i = 0; i < 7; i++) {"
 sum = sum + data [i];"
 System.out.print(data[i] + ", ");"
 }"
 average = sum / 7.0;"
 System.out.println("\n\nsum = “ + sum + “,

average = “ + average);"
 }"
}"

Array Length

n  The length of the array is important
n  This information is stored with the array

n  Accessed with <arrayname>.length

int[] foo = {1,2,3};"
for(int i = 0; i < foo.length; i++)"
 System.out.println(“foo[i] = “ + foo[i]);"

Passing Arrays to Methods

n  Exactly the same as any other variable
"int[] foo = {1, 2, 3};"
"
 someMethod(foo);"
 "
 static void someMethod(int[] bar) { ... };"

Arrays and Methods

n  Recall that the array variable and the
contents are created separately

n  The array name is a reference to the array of
values

n  When passing an array to a method, the
reference is copied into a local variable, but
the contents are the same
n  Changing array elements in a method will affect

the original values!

class SortArray {"
 public static void main(String[] args) {"
 int[] list = { 17, 3, 24 };"
"
 for(int i = 0; i < list.length; i++)"
 System.out.println(list[i]);"
"
 sort(list);"
"
 for(int i = 0; i < list.length; i++)"
 System.out.println(list[i]);"
 }"

static void sort(int[] list) {"
 for(int i = 1; i < list.length; i++) {"
 if(list[i] < list[i-1]) {"
 int temp = list[i-1];"
 list[i-1] = list[i];"
 list[i] = temp;"
"
 for(int j = i-1; j > 0; j--) {"
 if(list[j] < list[j-1]) {"
 int temp = list[j-1];"
 list[j-1] = list[j];"
 list[j] = temp;"
} } } } } }"

Copying Arrays

n  What happens if we do this:
int[] a, b = {1,2,3};"
a = b;"

n  Probably not what we wanted
n  a and b refer to the same physical memory

n  Instead:
a = (int[])b.clone();"

What’s Really Going On Here
int[] foo;

foo[2] = 5;

foo foo = new int[3]

5
int[] bar;

bar = foo; bar

What’s Really Going On Here
int[] foo;

foo[2] = 5;

foo foo = new int[3]

5
int[] bar;

bar = (int[])foo.clone();

bar

5

Example

n  Calculate the min, max, and average of
an array of values typed by the user

class MMA {"
 public static void main(String[] args) {"
 double[] foo;"
 int size;"
 double min, max, sum, avg;"
" " Scanner in = new Scanner(System.in);"
"
 System.out.println(“Please enter the

size of the array”);"
 size = in.nextInt();"
 foo = new double[size];"
"

 System.out.println(“Enter the elements”);"
 for(int i = 0; i < size; i++)"
 foo[i] = in.nextDouble();"
"
 min = max = foo[0];"
 for(int i = 0; i < foo.length; i++) {"
 if(foo[i] < min)"
 min = foo[i];"
 if(foo[i] > max) "
 max = foo[i];"
 sum += foo[i];"
 }"
 avg = sum/foo.length;"
 }"
}"

Selection Sort

n  Find the smallest element
n  Put it at the start of the list
n  Find the smallest element in the rest of

the list
n  Put it in the second spot on the list
n  Repeat until the list is sorted

//SelectionSort.java -sort an array of integers"
import tio.*;"
class SelectionSort {"
 public static void main(String [] args) {"
 int [] a = {7,3,66,3,-5,22,-77,2};"
"
 sort(a);"
"
 for (int i =0;i <a.length;i++){"
 System.out.println(a [i]);"
 }"
 }"

 //sort using the selection sort algorithm"
 static void sort(int [] data)) {"
 int next,indexOfNext;"
 "
 for (next =0;next <data.length -1;next++) {"
 indexOfNext = min(data,next,data.length -1);"
 swap(data,indexOfNext,next);"
 }"
 }"

"
 static int min(int[] data, int start, int end) {"
 int indexOfMin =start;"
"
 for (int i = start+1; i <= end; i++)"
 if (data [i] <data [indexOfMin])"
 indexOfMin = i;"
 return indexOfMin;"
 }"

 static void swap(int [] data, int first, int second) {"
 int temp;"
 temp = data [first];"
 data [first] = data [second];"
 data [second] = temp;"
 }"
}"

Searching an Ordered Array

n  Data is often stored in large arrays
n  Finding a particular element is an

important operation
n  Faster is better
n  If the arrays is unordered, you have to

look at every element
n  If the array is sorted, you can do better

n  Recall: binary search

Linear Search

static int linearSearch(int[] keys, int v) {"
 for (int i = 0; i < keys.length; i++) {"
 if (keys [i] == v) {"
 return i;"
 }"
 }"
 return -1;"
}"

Better Linear Search (sorted
list)

static int linearSearch(int[] keys, int v){"
 for (int i = 0; i < keys.length; i++)"
 if (keys[i] == v)"
 return i;"
 else if (keys[i] > v)"
 return -1;"
 return -1;"
}"

Binary Search
//BinarySearch.java -use bisection search to find"
//a selected value in an ordered array"
class BinarySearch {"
 public static void main(String [] args){"
 int[] data ={100,110,120,130,140,150};"
"
 int index =binarySearch(data,120);"
"
 System.out.println(index);"
 }"

 static int binarySearch(int[] keys, int v){"
 int position;"
 int begin = 0,end = keys.length -1;"
 while (begin <= end){"
 position = (begin +end)/2;"
 if (keys[position] == v)"
 return position;"
 else if (keys[position] < v)"
 begin = position +1;"
 else"
 end = position -1;"
 }"
 return -1;"
 }"
}"

Choosing the Best Algorithm

n  With n data elements:
n  Linear search takes n steps
n  Binary search takes log(n) steps
n  n >> log(n)
n  Binary search is always faster!
n  Aha!

Algorithm Complexity

n  In general, it is important to know
which algorithms are faster and which
are slower

n  In particular, we want to know how
many operations are required to do a
particular algorithm on a given number
of data items

n  Some algorithms are very efficient,
some are doable but slow, and some
aren’t doable at all

Examples
1 0 1 2 2
2 1 2 4 4
3 1.585 3 6 8
4 2 4 8 16
5 2.322 5 10 32
6 2.585 6 12 64
7 2.807 7 14 128
8 3 8 16 256
9 3.17 9 18 512
10 3.322 10 20 1024
100 6.644 100 200 1.26765E+30
1000 9.966 1000 2000 1.0715E+301

n log(n) n 2n 2n

Observations

n  Notice that
n  The n and 2n columns grow at the same

rate
n  Multiplying by a constant doesn’t make much

difference

n  The log(n) and n columns grow at very
different rates

n  The n and 2n columns also grow at very
different rates

n  Different functions of n make a big difference

Big O Notation

n  Big O notation distills out the important
information about how many operations
are required for an algorithm

n  O(f(n)) = c*f(n) for any c
n  An O(n) takes on the order of n operations

n  O(log(n)) << O(n) << O(2n)
n  Putting this into Practice

Putting this into Practice

n  Linear Search: O(n)
n  Binary Search: O(log(n))
n  Binary search will generally take less

time to execute than linear search
n  Binary search is a more efficient

algorithm

Type and Array

n  Recall: You can have an array of any
type of object
n  int, double, char, String, boolean

n  The details are exactly the same, except
that the elements of different types of
arrays are of different types

//CountWord.java"
import tio.*;"
public class CountWord {"
 public static void main(String[] args) {"
 String input;"
 char[] buffer;"
"
 System.out.println("type in line");"
 input = in.next();"
"
 System.out.println(input);"
"
 buffer = input.toCharArray();"
"
 System.out.println("word count is "+wordCount(buffer));"
 }"

 // words are separated by nonalphabetic characters"
 public static int wordCount(char[] buf)){"
 int position =0,wc =0;"
"
 while (position < buf.length) {"
 while (position < buf.length && !isAlpha(buf[position]))"
 position++;"
"
 if (position < buf.length)"
 wc++;"
"
 while (position < buf.length && isAlpha(buf [position]))"
 position++;"
 }"
 return wc;"
 }"

 public static boolean isAlpha(char c){"
 return (c>='a‘ && c<='z') || (c >='A‘ && c<='Z');"
 }"
}"

Two-Dimensional Arrays
n  Recall that data elements of any type

can be put in an array
n  Arrays of objects can be elements of

arrays
int[] foo = new int[3];
int[][] bar = new int[3][5];"
n  bar is an array of 3 arrays of 5 ints
n  bar[0] is an array of 5 ints
n  bar[1] is an array of 5 ints
n  bar[2] is an array of 5 ints

// Multiplication table"
class Mult {"
 public static void main(String[] args) {"
 int[][] data = new int[10][10];"
 for(int i = 0; i < data.length; i++) {"
 for(int j = 0; j < data[i].length; j++) {"
 data[i][j] = i * j;"
 }"
 }"
 for(int i = 0; i < data.length; i++) {"
 for(int j = 0; j < data[i].length; j++) {"
 System.out.print(data[i][j] + “ “);"
 }"
 System.out.print(“\n”);"
}}}"

Initializing 2D arrays

n  Remember that we can provide an
initializer list for a 1D array
int[] foo = {34, 21, 99, 3};"
"

n  We can do the same thing for a 2D
array
int[][] bar = {{3,2,4},{1,2,55},{44,3,9},{4,4,2}};"

The Game of Life

n  This is cool little game, originally
developed to simulate certain kinds of
growth

n  It is “played” on a rectangular (2D)
array, like a checker board

n  A cell of the board is either alive or
dead

n  Alive cells are marked with an *

Rules of Life
1.  A cell is either empty, indicated by a blank, or alive,

indicated by an * .
2.  Each cell is thought of as the center of a 3×3

square grid of cells which contains its eight
neighbors.

3.  A cell that is empty at time t becomes alive at time t
+1 if and only if exactly three neighboring cells
were alive at time t.

4.  A cell that is alive at time t remains alive at time t
+1 if and only if either two or three neighboring
cells were alive at time t. Otherwise,it dies for lack
of company (<2) or overcrowding (>3).

5.  The simulation is conducted, in principle, on an
infinite two-dimensional grid.

Analysis

n  We will simulate a finite grid.
n  Because the grid isn’t infinite, we must

decide how to deal with the borders.
n  To keep the program simple,we will treat the

borders as lifeless zones.

n  The initial placement of life forms in the grid
will be read from the keyboard as a sequence
of * s and dots.
n  The *s will stand for life forms and the dots will

represent empty cells.

Analysis

n  The user will specify the size of the
grid, which will always be square.

n  The user will specify the number of
generations to simulate.

n  The program should echo the initial
generation and then print each new
generation simulated.

Algorithm

1.  Read in the size of the grid
2.  Read in the initial generation
3.  Read in the number of generations to

simulate
4.  Print the current generation
5.  For the specified number of

generations
1.  advance one generation
2.  print the generation

Algorithm for Advancing

1.  For each cell in the grid
1.  Compute the number of neighbors
2.  If the cell has 2 neighbors and was alive

it stays alive
3.  If the cell has 3 neighbors, it is alive
4.  Otherwise the cell is dead

Methods

n  int getSize();"
n  void getInitialGrid(grid);"
n  int getGenerations();"
n  void updateGrid(boolean[][] grid);"
n  boolean updateCell(boolean[][] grid, int i, int

j);"
n  int countNeighbors(boolean[][] grid, int i, int j);"
n  void printGrid(boolean[][] grid);"

Data

n  boolean[][] grid;
n  int size;
n  int generations;
n  boolean[][] oldgrid;

Arrays of Non-Primitive Types

n  Recall: Any type can be made into an
array

n  This is also true for non-primitive types
like String
String[] foo;"
foo = new String[2];"
foo[0] = “Hi”;"
foo[1] = “Scott”;"

Arrays of Strings
class StringArray {"
 public static void main(String[] args) {"
 String[] myStringArray = {"zero","one","two","
 "three","four","five","six","seven","
 "eight","nine"};"
 "
 for (int i = 0; i < myStringArray.length; i++)"
 System.out.println(myStringArray [i]);"
 }"
}"

main(String[] args)

n  Now we know what String[] args means
n  It is an array of command-line

arguments – the parameters passed to
the program on the command line

n  java myProgram one two three
n  Passes “one”, “two”, and “three” in args

Command Line Arguments

//CommandLine.java -print command line arguments"
class CommandLine {"
 public static void main(String[] args){"
 for (int i = 0; i < args.length; i++)"
 System.out.println(args [i]);"
 }"
}"

