
Methods: Functional
Abstraction

n  Structured Programming
n  The flow of control in a program should be as

simple as possible
n  The construction of a program should

embody top-down design

n  Top-Down Design
n  Repeatedly decompose a problem into

smaller subproblems
n  Each decomposition is an algorithm

n  Eventually, smallest subproblems are directly
solvable

Example

n  Problem: Play tic-tac-toe
1.  Find the best move
2.  Make that move
3.  Wait for the other player to move
4.  Go to step 1

n  Find the best move
1.  If there is a winning move, choose it
2.  If there is a blocking move, choose it
3.  If there is a move that leads to a win, choose it
4.  Etc.

Method Invocation
n  A simple program contains one or more

methods, including
n  main(), where program execution begins

n  When program control encounters a method
name followed by (), it is called or invoked
n  Program control passes to the called method
n  When the called method is finished executing,

program control returns to the calling method,
where program execution continues

// Message.java: Simple method use"
class Message {"
 public static void main(String [] args){"
 System.out.println("HELLO DEBRA!");"
 printMessage(); //method call"
 System.out.println("Goodbye.");"
 }"
"
 // definition of method printMessage"
 static void printMessage(){"
 System.out.println("A message for you:");"
 System.out.println("Have a nice day!\n");"
 }"
}"

Static Method Definition
public static <returntype> <Ident> (<paramlist>)<block>!
n  public static – trust me for now
n  <returntype> The type of data returned by

the method
n  void means nothing is returned

n  <ident> - the method name
n  <paramlist> - list of inputs to the method
n  <block> - the code that will get executed

when the method is invoked

Details

n  Parameters
n  Values passed from the calling function to

the called function
n  Act like variables inside the called function

n  Body of the method (<block>)
n  Variable declarations and statements that

are executed when the method is called

// Message.java: Simple method use, w/parameters"
class Message {"
 public static void main(String [] args){"
 System.out.println("HELLO DEBRA!");"
 printMessage(“Testing”); //method call"
 System.out.println("Goodbye.");"
 }"
"
 // definition of method printMessage"
 static void printMessage(String msg){"
 System.out.println(msg);"
 System.out.println("Have a nice day!\n");"
 }"
}"

The return Statement

n  Returns program control to the calling
method

n  May return a value of the appropriate type
return;"
return a; "
return (a + b);"
return “error!”;"

n  A method can have zero or more return
statements
n  Control returns to the calling method as soon as

one is reached
n  If no return statement is reached, control returns

to the calling method when the end of the method
is reached

// Min2.java -return expression in a method"
class Min2 {"
"
 public static void main(String [] args){"
 int j =78, k =3 *30, m;"
 System.out.println("Minimum of two integers Test:");"
 m =min(j,k);"
 System.out.println("The minimum of :“ +j +","+k +"is "+m);"
 }"
"
 // FInd the smaller of two integers"
 static int min(int a,int b){ "
 if (a <b)"
 return a;"
 else"
 return b;"
 }"
}"

Scope of Variables

n  The scope of a variable is the range of
statements that can access it

n  Any variable declared within a method is a
local variable
n  Created anew each time the method is called
n  Cease to exist after the method finishes executing
n  scope: any statement after the declaration and

before the end of the block in which it is declared
n  The scope of variables declared in the initialization

portion of a for loop includes the boolean expression,
update expression, and the loop body

//Min2Bad.java -doesn't work because of scope!
class Min2Bad {"
 public static void main(String [] args){"
 int j =78,k =3 *30,m;"
"
 System.out.println("Minimum of two integers Test:");"
 m =min();"
 System.out.println("The minimum of :“ +j +","+k +"is "+m);"
 }"
"
 static int min() {"
 if (j <k)"
 return j;"
 else"
 return k;"
 }"
}"

Example of Top-Down Design

n  Problem: Find the relative areas of a
unit circle and a unit square

n  One way to do this:
n  Dartboard with a square with a circle

inside
n  Throw darts blindfolded and count the

number that fall inside the circle and
divide by the total number thrown

n  Or, by simulating the dartboard, generate
random numbers representing dart
locations

Algorithm

1.  Find out the number of trials to execute
2.  Execute the specified number of trials
3.  Calculate the relative areas
4.  Output the results

1. Find out the number of
trials to execute

1.  Ask the user how many trials to
execute

2.  Store the number in a local variable

2. Execute the specified
number of trials

1.  Set i equal to zero
2.  If i is less than the number of trials

1.  Execute a trial
2.  Record the result
3.  Increment i
4.  Repeat

Execute a trial

1.  Generate two random numbers x and
y, between 0 and 1

2.  See if (x,y) lies within the unit circle
centered at (1/2,1/2)

3.  If so, return true
4.  Otherwise, return false

3. Calculate the relative areas

1.  Divide the number of successful trials
by the total number of trials

2.  Return the result

// Calculate the percentage of a unit square taken up by a unit
circle"

class RelativeAreas {"
 public static void main(String[] args) {"
 int count, successful;"
 double ratio;"
"
 // Find out the number of trials to execute"
 count = getTrials();"
"
 // Execute the specified number of trials"
 successful = executeTrials(count);"
"
 // Calculate and output the relative areas"
 printResults(successful, count);"
}"

 static int getTrials() {"
 int numTrials;"
" Scanner in = new Scanner(System.in);"

 System.out.println("Please enter the number of trials: "); "
 numTrials = in.nextInt();"
 return numTrials;"
 }"
"
 static int executeTrials(int numLoops) {"
 int count = 0;"
"
 for(int i = 0; i < numLoops; i++) {"
 if(oneTrial() == true)"
 count++;"
 }"
 return count;"
 }"
"

"
 static boolean oneTrial() {"
 double x, y;"
 double distance;"
"
 x = Math.random();"
 y = Math.random();"
 distance = Math.sqrt((0.5 - x)*(0.5 - x) + (0.5 - y)*(0.5 - y));"
"
 return (distance <= 0.5);"
 }"
"
 static void printResults(int successful, int count) {"
 double ratio;"
"
 ratio = (double)successful / count;"
 System.out.println(“Percentage = “ + ratio * 100);"
 }"
}"

Invocation and Call-by-Value
n  To call one method from another method in

the same class
n  Write the name of the method, and
n  a list of arguments in parentheses

n  The arguments have to match in number and
type those listed in the method definition

n  Each argument is evaluated, and its value is
used to initialize the corresponding formal
parameter in the method invocation
n  Changing the value of a parameter in a method

does not change the value of the thing passed to
it!

// FailedSwap.java -Call-By-Value test"
class FailedSwap {"
 public static void main(String [] args){"
 int numOne =1,numTwo =2;"
 swap(numOne,numTwo);"
 System.out.println("numOne ="+numOne);"
 System.out.println("numTwo ="+numTwo);"
 }"
 static void swap(int x,int y) {"
 int temp;"
 System.out.println("x ="+x);"
 System.out.println("y ="+y);"
 temp = x;"
 x = y;"
 y = temp;"
 System.out.println("x ="+x);"
 System.out.println("y ="+y);"
 }"
}"

21 Pickup

n  Two-player game

n  Start with a pile of 21 stones

n  Players take turns removing 1,2,or 3
stones from the pile

n  The player that removes the last
stone wins

Recall: Software Life Cycle

n  Requirements analysis and
definition

n  Design

n  Implementation

n  Testing

n  Maintenance

Requirements Questions

n  What is the role of the computer?
n  Will it be one of the players or will it simply

enforce the rules and display the progress of
a game between two human players?

n  What will be the interface between the
human being and the computer?
n  Graphical user interface or simple text

display?

n  Does the program play a sequence of
games, keeping track of the number of
games won by the various players, or
does the program play one game and
then exit?

Requirements Answers

n  What is the role of the computer?
n  It will be one of the players

n  What will be the interface between the
human being and the computer?
n  Simple text display

n  Does the program play a sequence of
games, keeping track of the number of
games won by the various players, or
does the program play one game and
then exit?
n  One game at a time

Algorithm: 21 Pickup

1.  Print the instructions

2.  Create the initial pile of
21 stones

3.  While there are stones left
1.  Ask the user or computer for

their move (depending on whose
turn it is)

2.  Remove their stones from the
pile

3.  Print out the status

4.  Print the outcome

Algorithm: Have the User
Move

1.  Prompt the user for the user’s next
move

2.  From the keyboard, read the number
of stones to remove

3.  While the number read is not a
legal move

1.  Prompt the user again

2.  Read the number of stones to
remove

4.  Return the number of stones to
remove

Algorithm: Have the Computer
Move

1.  Compute number of stones for the
computer to remove
Version 1: Random

Version 2:
1.  If three or fewer stones remain, pick them all up.

2.  If more than three stones remain, try to leave the
pile with a number of stones that is a multiple of
four.

3.  Otherwise, remove just one stone.

2.  Print the computer's move on the
screen

3.  Return that number

Methods Needed
n  public static void main(String[] args)

n  Play the game
n  static void printInstructions()

n  Print instructions

n  static void printWinner(int turn)
n  Print the winner (based on whose turn it is)

n  static int getUserMove(int numberOfStones)
n  Get the user’s move

n  static int getComputerMove(int
numberOfStones)
n  Get the computer’s move

Let’s implement it!

Testing

n  At a minimum you want to
n  Execute every instruction at least once
n  Take every branch at least once
n  Try every possible valid input
n  Try every possible type of invalid input

n  This isn’t always possible
n  NORAD
n  Do the best you can

Recursion

n  When a method calls itself, this is
referred to as recursion

n  Recursion can be confusing, but is
extremely powerful

n  Often used when a mathematical
operation is defined in terms of other
values of itself
n  Examples: factorials, fibonacci numbers, …

Recursive Methods

n  Recursive methods have three parts
n  A part that does something
n  A part that calls the method
n  A part that does not call the method

n  Otherwise it would go forever
n  There is a test to decide whether or not to call

the method again

Form of a Recursive Function

public static <type>
recursiveMethod(<args>) {"

 <whatever>"
 if(<stopping condition>)"
 <whatever you do at the end>"
 else"
 recursiveMethod(<different args>);"
}"

Example: Factorial

n  n! = n * (n-1) * (n-2) * … * 2 * 1
n  n! = n * (n-1)!
n  Recall: 0! = 1 and 1! = 1

public static int factorial(int n) {"
 if(n <= 1)"
 return 1;"
 else "
 return (n * factorial(n-1));"
}"

Example: Factorial (cont.)

n  Suppose we execute factorial(4)
n  main calls factorial(4) <a>
n  <a> calls factorial(3)
n  calls factorial(2) <c>
n  <c> calls factorial(1) <d>
n  <d> returns 1
n  <c> returns 2 * 1 (= 2)
n  returns 3 * 2 (= 6)
n  <a> returns 4 * 6 (= 24)
n  and that is the answer: 24

Example: Fibonacci numbers

n  Each Fibonacci numbers is defined as the sum
of the two previous fibonacci numbers

n  fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
n  fibonacci(0) = 1, fibonacci(1) = 1

public static int fibonacci(int n) {"
 if(n <= 1)"
 return 1;"
 else "
 return (fibonacci(n-1) + fibonacci(n-2));"
}

Example: Fibonacci (cont.)

n  Suppose we execute fibonacci(3)
n  main calls fibonacci(3) <a>
n  <a> calls fibonacci(2) and fibonacci(1) <c>
n  calls fibonacci(1) <f> and fibonacci(0) <g>
n  <f> returns 1
n  <g> returns 1
n  <c> returns 1
n  returns 2
n  <a> returns 3
n  and that is the answer: 3

Recursion Wrapup

n  Recursion is appropriate for any
mathematical function that can be
defined in terms of previous values of
itself:
n  f(x) = g(f(y)), where y < x

n  Examples:
n  Exponential: xn = x * xn-1

Example: Mathematical
Functions

n  Often want to know the zero crossings
of a function - the values of x for which
f(x) = 0

n  This example doesn’t illustrate any
specific point having to do with
methods, but does bring up lots of
useful things to discuss

n  We will examine two possible solutions
n  Linear search
n  Binary search

class SimpleFindRoot {"
 public static void main(String [] args){"
 double a = 0.0, b = 10.0, x = a, step = 0.001;"
"
 while(f(x) != 0.0 && x < b)"
 x =x +step;"
"
 if (x < b)"
 System.out.println("root is "+x);"
 else"
 System.out.println("root not found");"
 }"
 static double f(double x){return (x *x -2.0);}"
}"

class FindRoot {"
 public static void main(String [] args){"
double a=0.0, b=10.0, eps=0.00001, root =0.0, residual;"
 while (b - a > eps){"
 root = (a + b) / 2.0;"
 residual = f(root);"
 if(residual > 0)"
 b = root;"
 else"
 a =root;"
 }"
 System.out.println("root is "+root);"
 }"
 static double f(double x){return (x *x -2.0);}"
}"

Method Overloading

n  Simple idea: The method called is
determined by:
n  the name of the method, and
n  the number and type of parameters in the

call

n  So, two methods can have the same
name as long as they have different
numbers and/or types of parameters

static int min(int s, int t) {"
 if(s < t)"
 return s;"
 else "
 return t;"
 }"
 static double min(double s, double t) {"
 if(s < t)"
 return s;"
 else "
 return t;"
 }"

public static void main(String[] args) {"
 double a,b,c;"
 int w,x,y,z;"
 c = min(a,b);"
 z = min(x,y);"
 w = min(a,y);"
 }

Other examples of method
overloading

n  System.out.println()
n  …

Applets

n  Graphical java programs
n  Have no “main()” method
n  Run inside a viewer or browser

n  appletViewer
appletViewer FirstApplet.java
n  In a web page
<applet code=“FirstApplet.class” width=500
height=200></applet>

FirstApplet.java

n  paint() method instead of main()
n  Parameter: Graphics object

n  Supports drawing methods (see javadoc)

AppletSum.java

DrawChairs.java

