
Statements and Control Flow

n  The programs we have seen so far do exactly
the same list of instructions every time

n  What if we want to do different things for
different inputs?
n  Do some action only if a specified condition is met
n  We need conditional statements

if(value < 0)"
 System.out.println(“Bad input”);"

Statements and Control Flow

n  What if we want to repeat some set of
instructions some number of times?
n  Repeat an action some number of times
n  We need iterative statements

while(i < 100)"
 System.out.println(i++);"

Statements

n  Declaration Statement: type, followed by a
comma-separated list of identifiers, followed
by a semi-colon
"int foo, bar;"
"String name = “Scott”;"

n  Expression Statement: expression followed by
a semi-colon
n  Assignment Expression: size = size + 5"
n  Method Call Expression: System.out.println(…)"
n  Not all expressions can be part of an expression

statement (more on this later)"

Block Statement

n  Block Statement: one or more statements
inside braces, e.g.,
{"
 int a = 4; " " "// Statement"
 System.out.println(a); "// Statement"
 }" " " " " "// Statement"
n  A Block Statement is a Statement"
n  Block Statements can contain Block Statements"
n  Variables declared within a block disappear when

the block has finished executing"

Empty Statement
n  Empty statement: do-nothing statement

;"
n  Is a statement, but does nothing

n  Example:
n  Wait for a condition to become true

while(notTimeYet)"
 ;"
 <other stuff>

n  Question: Which is clearer, that, or this:"
while(notTimeYet);"
 <other stuff>"

Boolean Expression

n  Any expression that evaluates to true or
false
n  true
n  false
n  Comparisons
n  Logical operations

Relational Operators
Name Symbol Expression

Equal = = a = = b

Not equal != a != b

Less than < a < b

Greater than > a > b

Less than or equal to <= a <= b

Greater Than or Equal to >= a >= b

Comparisons

n  Comparisons (using relational
operators) evaluate to true or false

n  Example:
int a = 5, b = 7;"
boolean flag;"
flag = (a < b); " "// boolean expression"
System.out.println(flag);"

Logical Operators

n  Operations on logical values

Name Operator Expression
NOT ! a = !(b = = c)

AND && a = (b && c)

OR || a = (b || c)

Logical Operations
n  Example 1

int x, y;"
boolean b;"
x = in.nextInt();"
y = in.nextInt();"
b = (x == y);"
System.out.println(b);"

n  Example 2
boolean b = (age >= 18 && age < 65);"
System.out.println("full fare adult is " + b);"
b = (age < 18 || age >= 65);"
System.out.println("reduced fare is" + b);"

Operator Precedence and
Associativity

n  Operator Precedence
n  The order in which different operators are

evaluated, i.e. who goes first
n  * has higher precedence than +, both higher than

=
 int x = 3 + 4 * 5; // x = 23, not 35!"

n  Operator Associativity
n  The order in which operators of the same

precedence are applied
n  * and % have equal precedence, left to right

associativity
 int y = 4 * 3 % 2; // y = 0, not 4!

Operator Precedence and
Associativity

Operators Associativity
() ++ (postfix) -- (postfix) Left to right
+ (unary) - (unary) ++ (prefix) -- (prefix) ! Right to left
* / % Left to right
+ - Left to right
< <= > >= Left to right
= = != Left to right
&& Left to right
|| Left to right
= += -= *= /= etc. Right to left

What if we want a different
evaluation order?

n  Parentheses () have a higher
precedence than just about everything
else
n  They can be used to impose a different

evaluation order
int x = 3 + 4 * 5; "// x = 23"
int x = (3 + 4) * 5; "// x = 35"
int y = 4 * 3 % 2; "// y = 0"
int y = 4 * (3 % 2); "// y = 4

Conditional Statements

n  Conditionally execute a statement
based on the value of a boolean
expression
n  if statement - decide whether or not to

take a particular action
n  Execute a particular statement only if a given

boolean expression is true

n  if-else statement - choose between two
alternative actions

n  Execute one of two statements based on the
value of a given boolean expression

Conditional Statements (cont.)
n  switch statement: choose among several

alternative actions
n  Execute one of a set of statements based on a

specified value (not a boolean expression)

n  while statement: repeat an action as
long as a specified condition is true

n  Repeatedly execute a statement as long as the
given boolean expression is true

n  for statement: execute an action a
specified number of times

n  Repeatedly execute a statement as long as the
given boolean expression is true

if Statement

n  Used to decide whether or not to take a
particular action

"if(<boolean expression>)"
 <statement>"

n  If the boolean expression is true, the
then statement is executed, otherwise it
is not

Flowchart For An if Statement

Boolean
Expression

Statement

True

False

The rest of the program

if Statements in Action
if(value > 50)
 System.out.println(“Warning, value too big!”);

if(y != 0)
 z = x / y;

if(item.price < 100 && cashOnHand >= item.price) {
 item.purchase();
 cashOnHand - = item.price;
}

Example: Bubblesort

n  Given three numbers, place them in
increasing order

n  Algorithm:
1.  Put the three numbers in a, b, and c
2.  if b is less than a, swap a and b
3.  if c is less than b

1.  swap b and c
2.  if b is less than a, swap a and b

Bubblesort (1)

24

0

37

a

b

c

1.  Put the three numbers
in a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (1)

24

0

37

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (1)

0

24

37

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (1)

0

24

37

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (1)

0

24

37

a

b

c

Bubblesort (2)

35

17

6

a

b

c

1.  Put the three numbers
in a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

35

17

6

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

17

35

6

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

17

35

6

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

17

6

35

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

17

6

35

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

6

17

35

a

b

c

1.  Put the three numbers in
a, b, and c

2.  If b is less than a, swap a
and b

3.  If c is less than b
1.  swap b and c
2.  if b is less than a, swap a

and b

Bubblesort (2)

6

17

35

a

b

c

// SortInput.java - sort three numbers"
import java.util.*; // for Scanner"
"
class SortInput {"
 public static void main (String[] args) {"
 int a, b, c, temp;"
" Scanner in = new Scanner (System.in);"

"
 // Get three numbers from the user"
 System.out.println("type three integers:");"
 a = in.nextInt();"
 b = in.nextInt();"
 c = in.nextInt();"
"
 // If b is less than a, swap a and b"
 if (b < a) {"
 temp = a;"
 a = b;"
 b = temp;"
 }"

 // If c is less than b, swap b and c"
 if (c < b) {"
 // swap b and c"
" temp = b;"

 b = c;"
 c = temp;"
"
 // if (the new) b is less than a, swap a and b"
 if (a > b) {"
 temp = a;"
 a = b;"
 b = temp;"
 }"
 }"
"
 System.out.print("The sorted order is : ");"
 System.out.println(a + ", " + b + ", " + c);"
 }"
}"

If-else Statement

n  Used to choose between two alternative
actions

"if(<boolean expression>)"
 <statement>"
 else"
 <statement>"

n  If the boolean expression is true, the then
statement is executed, otherwise the else
statement is executed

Flowchart For An if-else
Statement

Boolean
Expression

Then Statement

True False

The rest of the program

Else Statement

If-else Statements in Action
if (x < y)"
 min = x;"
else"
 min = y;"
"
System.out.println("min = " + min);"
"
if(y == 0)"
"System.out.println(“Divide by zero error!”);"

else"
 z = x / y;"
"

Details

n  Any statement can be a then or an else
statement
n  Expression Statement, Block Statement,

Conditional Statement (including if or if-
else Statements), etc.

n  Common errors
n  Look at the ones listed in the book

n  They are exactly right

if-else-if-else

n  If you string if-elses together, each if-else is
the statement for the previous else

if(<boolean expression>)"
 <statement>"
else if(<boolean expression>)"
 <statement>"
else <statement>"
<etc.>"

Dangling else

n  An else always binds to the nearest
previous unmatched if in its block

if(<boolean expression1>) { // if 1"
 if(<boolean expression2>) // if 2"
 <statement>"
 else // binds to “if 2”"
 <statement>"
}"

Dangling else

n  An else always binds to the nearest
unmatched if in its block

if(<boolean expression1>) { // if 1"
if(<boolean expression2>) // if 2"
 <statement>"
}"
else // binds to “if 1”"
 <statement>"

while Statement

n  Repeat some action as long as a specified
condition is true
"
while(<boolean expression>)"
 <statement>"

n  Repeatedly execute <statement> until
<boolean expression> is false
n  May not execute <statement> at all

Flowchart For A while
Statement

Boolean
Expression

Statement

True

False

The rest of the program

while Statements in Action

int value = 0;
while(value < 5)
 System.out.println(value++);

char c = ‘a’;
while(c != ‘x’) {
 c = in.nextChar();
 System.out.println(c);
}

for Statement

n  Repeat some action as long as a specified
condition is true"
for(<init>; <boolean>; <update>)"
 <statement>"

n  <init> - executed once, at the beginning
n  <boolean> - checked each time through the loop,

before <statement>
n  <update> - executed each time, after

<statement>
n  for statements are the same as while statements,

except that init and update are explicitly included

Flowchart For A for Statement

Boolean
Expression

Statement

True

False

The rest of the program

Initialization

Update

for Statements in Action
for(int value = 0; value < 5; value++)
 System.out.println(value);

for(char c = ‘a’; c != ‘x’; System.out.print(c))
 c = in.next().charAt(0);

for(int i = 1, j = 1,t; i < 100; j = t +j) {
 System.out.println(i);

 t = i;
 i = j;
}

break and continue
n  break and continue interrupt the flow of control in

a while loop, for loop, or switch statement
n  break

n  Jumps out of a while or for loop
n  With nested loops, jumps out of innermost one only

n  Causes a switch statement to terminate
n  If you omit it after a case, control drops into the next case

n  continue
n  Terminates the current iteration of a loop

break Statement in Action

char c = ‘a’;
while(c != ‘x’) {
 c = in.next().charAt();
 System.out.print(c);
}

while(true) {
 c = in.next().charAt();
 System.out.println(c);
 if(c == ‘x’)
 break;
}

continue Statement in Action

for(int i = 0; i < 100; i++) {
 if(i % 2 == 1)
 continue;
 System.out.println(i);
}

switch Statement
n  Choose among several alternative actions
"switch(<controlling expression>) { // integer variable or value"

 case value1: // if <ce> == value1, do <statement1>"
 <statement1>"
 break;"
 case value2 : // if <ce> == value2, do <statement2>"
 <statement2>"
 break;"
 <… more cases here …>"
 case valuen : // if <ce> == valuen, do <statementn>"
 <statementn>"
 break;"
 }"

switch Statements in Action

switch(dayOfWeek) {
 case 1:
 System.out.println(“Sunday”);
 break;
 case 2:
 System.out.println(“Monday”);
 break;
 <etc.>
 default:
 System.out.println(“Huh?”);
 break;
}

