
Statements and Control Flow 

n  The programs we have seen so far do exactly 
the same list of instructions every time 

n  What if we want to do different things for 
different inputs? 
n  Do some action only if a specified condition is met 
n  We need conditional statements 

if(value < 0)"
    System.out.println(“Bad input”);"



Statements and Control Flow 

n  What if we want to repeat some set of 
instructions some number of times? 
n  Repeat an action some number of times 
n  We need iterative statements 

while(i < 100)"
    System.out.println(i++);"



Statements 

n  Declaration Statement: type, followed by a 
comma-separated list of identifiers, followed 
by a semi-colon 
"int foo, bar;"
"String name = “Scott”;"

n  Expression Statement: expression followed by 
a semi-colon 
n  Assignment Expression: size = size + 5"
n  Method Call Expression: System.out.println(…)"
n  Not all expressions can be part of an expression 

statement (more on this later)"



Block Statement 

n  Block Statement: one or more statements 
inside braces, e.g., 
{"
    int a = 4; " " "// Statement"
    System.out.println(a);  "// Statement"
 }" " " " " "// Statement"
n  A Block Statement is a Statement"
n  Block Statements can contain Block Statements"
n  Variables declared within a block disappear when 

the block has finished executing"



Empty Statement 
n  Empty statement: do-nothing statement 

;"
n  Is a statement, but does nothing 

n  Example: 
n  Wait for a condition to become true 

while(notTimeYet)"
    ;"
 <other stuff> 

n  Question: Which is clearer, that, or this:"
while(notTimeYet);"
    <other stuff>"



Boolean Expression 

n  Any expression that evaluates to true or 
false 
n  true 
n  false 
n  Comparisons 
n  Logical operations 



Relational Operators 
Name Symbol Expression 

Equal = = a = = b 

Not equal != a != b 

Less than < a < b 

Greater than > a > b 

Less than or equal to <= a <= b 

Greater Than or Equal to >= a >= b 



Comparisons 

n  Comparisons (using relational 
operators) evaluate to true or false 

n  Example: 
int a = 5, b = 7;"
boolean flag;"
flag = (a < b); " "// boolean expression"
System.out.println(flag);"



Logical Operators 

n  Operations on logical values 

Name Operator Expression 
NOT ! a = !(b = = c) 

AND && a = (b && c) 

OR || a = (b || c) 



Logical Operations 
n  Example 1 

int x, y;"
boolean b;"
x = in.nextInt();"
y = in.nextInt();"
b = (x == y);"
System.out.println(b);"

n  Example 2 
boolean b = (age >= 18 && age < 65);"
System.out.println("full fare adult is " + b);"
b = (age < 18 || age >= 65);"
System.out.println("reduced fare is" + b);"



Operator Precedence and 
Associativity 

n  Operator Precedence 
n  The order in which different operators are 

evaluated, i.e. who goes first 
n  * has higher precedence than +, both higher than 

= 
 int x = 3 + 4 * 5;  // x = 23, not 35!"

n  Operator Associativity 
n  The order in which operators of the same 

precedence are applied 
n  * and % have equal precedence, left to right 

associativity 
 int y = 4 * 3 % 2;  // y = 0, not 4! 



Operator Precedence and 
Associativity 

Operators Associativity 
( ) ++ (postfix) -- (postfix) Left to right 
+ (unary) - (unary) ++ (prefix) -- (prefix) ! Right to left 
*  /  % Left to right 
+  - Left to right 
<  <=  >  >= Left to right 
= =  != Left to right 
&& Left to right 
|| Left to right 
=  +=  -=  *=  /= etc. Right to left 



What if we want a different 
evaluation order? 

n  Parentheses ( ) have a higher 
precedence than just about everything 
else 
n  They can be used to impose a different 

evaluation order 
int x = 3 + 4 * 5; "// x = 23"
int x = (3 + 4) * 5; "// x = 35"
int y = 4 * 3 % 2; "// y = 0"
int y = 4 * (3 % 2); "// y = 4 



Conditional Statements 

n  Conditionally execute a statement 
based on the value of a boolean 
expression 
n  if statement - decide whether or not to 

take a particular action 
n  Execute a particular statement only if a given 

boolean expression is true 

n  if-else statement - choose between two 
alternative actions 

n  Execute one of two statements based on the 
value of a given boolean expression 



Conditional Statements (cont.) 
n  switch statement: choose among several 

alternative actions 
n  Execute one of a set of statements based on a 

specified value (not a boolean expression) 

n  while statement: repeat an action as 
long as a specified condition is true 

n  Repeatedly execute a statement as long as the 
given boolean expression is true 

n  for statement: execute an action a 
specified number of times 

n  Repeatedly execute a statement as long as the 
given boolean expression is true 



if Statement 

n  Used to decide whether or not to take a 
particular action 

"if(<boolean expression>)"
        <statement>"

n  If the boolean expression is true, the 
then statement is executed, otherwise it 
is not 



Flowchart For An if Statement 
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if Statements in Action 
if(value > 50) 
    System.out.println(“Warning, value too big!”); 
 
if(y != 0) 
    z = x / y; 
 
if(item.price < 100 && cashOnHand >= item.price) { 
    item.purchase( ); 
    cashOnHand - = item.price; 
} 



Example: Bubblesort 

n  Given three numbers, place them in 
increasing order 

n  Algorithm: 
1.  Put the three numbers in a, b, and c 
2.  if b is less than a, swap a and b 
3.  if c is less than b 

1.  swap b and c 
2.  if b is less than a, swap a and b 
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// SortInput.java - sort three numbers"
import java.util.*; // for Scanner"
"
class SortInput {"
    public static void main (String[] args) {"
        int a, b, c, temp;"
"   Scanner in = new Scanner (System.in);"

"
        // Get three numbers from the user"
        System.out.println("type three integers:");"
        a = in.nextInt();"
        b = in.nextInt();"
        c = in.nextInt();"
"
        // If b is less than a, swap a and b"
        if (b < a) {"
            temp = a;"
            a = b;"
            b = temp;"
        }"



        // If c is less than b, swap b and c"
        if (c < b) {"
            // swap b and c"
"       temp = b;"

            b = c;"
            c = temp;"
"
            // if (the new) b is less than a, swap a and b"
            if (a > b) {"
                temp = a;"
                a = b;"
                b = temp;"
            }"
        }"
"
        System.out.print("The sorted order is : ");"
        System.out.println(a + ", " + b + ", " + c);"
    }"
}"



If-else Statement 

n  Used to choose between two alternative 
actions 

"if(<boolean expression>)"
        <statement>"
    else"
        <statement>"

n  If the boolean expression is true, the then 
statement is executed, otherwise the else 
statement is executed 
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If-else Statements in Action 
if (x < y)"
    min = x;"
else"
    min = y;"
"
System.out.println("min = " + min);"
"
if(y == 0)"
"System.out.println(“Divide by zero error!”);"

else"
    z = x / y;"
"



Details 

n  Any statement can be a then or an else 
statement 
n  Expression Statement, Block Statement, 

Conditional Statement (including if or if-
else Statements), etc. 

n  Common errors 
n  Look at the ones listed in the book 

n  They are exactly right 



if-else-if-else 

n  If you string if-elses together, each if-else is 
the statement for the previous else 

 
if(<boolean expression>)"
    <statement>"
else if(<boolean expression>)"
    <statement>"
else <statement>"
<etc.>"



Dangling else 

n  An else always binds to the nearest 
previous unmatched if in its block 

 
if(<boolean expression1>)  {  // if 1"
     if(<boolean expression2>)    // if 2"
        <statement>"
    else                                       // binds to “if 2”"
        <statement>"
}"



Dangling else 

n  An else always binds to the nearest 
unmatched if in its block 

 
if(<boolean expression1>)  {  // if 1"
if(<boolean expression2>)     // if 2"
    <statement>"
}"
else                                       // binds to “if 1”"
    <statement>"



while Statement 

n  Repeat some action as long as a specified 
condition is true 
"
while(<boolean expression>)"
    <statement>"

n  Repeatedly execute <statement> until 
<boolean expression> is false 
n  May not execute <statement> at all 
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while Statements in Action 

int value = 0; 
while(value < 5) 
    System.out.println(value++); 
 
char c = ‘a’; 
while(c != ‘x’) { 
    c = in.nextChar(); 
    System.out.println(c); 
} 



for Statement 

n  Repeat some action as long as a specified 
condition is true"
for(<init>; <boolean>; <update>)"
    <statement>"

n  <init> - executed once, at the beginning 
n  <boolean> - checked each time through the loop, 

before <statement> 
n  <update> - executed each time, after 

<statement> 
n  for statements are the same as while statements, 

except that init and update are explicitly included 
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for Statements in Action 
for(int value = 0; value < 5; value++) 
    System.out.println(value); 
 
for(char c = ‘a’;  c != ‘x’; System.out.print(c)) 
    c = in.next().charAt(0); 
 
for(int i = 1, j = 1,t; i < 100; j = t +j) { 
    System.out.println(i); 

 t = i; 
    i = j; 
} 
     



break and continue 
n  break and continue interrupt the flow of control in 

a while loop, for loop, or switch statement 
n  break 

n  Jumps out of a while or for loop 
n  With nested loops, jumps out of innermost one only 

n  Causes a switch statement to terminate 
n  If you omit it after a case, control drops into the next case 

n  continue 
n  Terminates the current iteration of a loop 



break Statement in Action 

char c = ‘a’; 
while(c != ‘x’) { 
    c = in.next().charAt(); 
    System.out.print(c); 
} 
 
while(true) { 
    c = in.next().charAt(); 
    System.out.println(c); 
    if(c == ‘x’) 
        break; 
} 



continue Statement in Action 

 
for(int i = 0; i < 100; i++) { 
    if(i % 2 == 1) 
        continue; 
    System.out.println(i); 
} 



switch Statement 
n  Choose among several alternative actions 
"switch(<controlling expression>) {    // integer variable or value"

        case value1:                 // if <ce> == value1, do <statement1>"
            <statement1>"
            break;"
        case value2 :                 // if <ce> == value2, do <statement2>"
             <statement2>"
             break;"
        <… more cases here …>"
        case valuen :                 // if <ce> == valuen, do <statementn>"
              <statementn>"
              break;"
    }"



switch Statements in Action 

switch(dayOfWeek) { 
    case 1: 
        System.out.println(“Sunday”); 
        break; 
    case 2: 
        System.out.println(“Monday”); 
        break; 
    <etc.> 
    default: 
        System.out.println(“Huh?”); 
        break; 
} 


