
What is a Program?

n  A recipe for doing something
n  A precise set of instructions

n  Generally from a limited set of available
instructions

n  Like the rules for a game, or how to
build something, or directions to your
house, or a recipe for macaroni and
cheese

Tic-Tac-Toe

n  Draw a big #
n  First player draws an X in one square
n  Second player draws an O in some

square.
n  Continue until someone has three

letters in a row or diagonal, or all the
squares are filled

Macaroni and Cheese

n  Boil some water
n  Open the box
n  Remove the cheese packet
n  Put the macaroni in the boiling water
n  Boil for 7 minutes
n  Drain water
n  Add butter and cheese powder (from packet)
n  Stir

Directions to my house

n  Go to the UCSC campus entrance at Bay
and High Street

n  Enter the campus
n  Turn right at the second opportunity
n  Stay to the left as you follow the road
n  Turn right into the parking lot with the

motorcycles
n  Park in an empty spot

Flowchart
Go to UCSC
entrance at

Bay and High

Drive
to an

intersection

Second

intersection?

Turn
Right

Enter the
parking lot

Park
the car

Drive
to a

parking lot

Do you see
Motorcycles?

Yes

No

Yes

No

What can computers
understand?

n  A computer probably couldn’t follow the
instructions we just gave for playing tic-tac-
toe or getting to someone’s house

n  Different computers have different basic
operations they can perform, like addition,
subtraction, draw a line, etc.
n  Generally lower level than the abstractions we

usually use

n  A Compiler converts our programs into
language a computer can understand

Algorithm

n  A sequence of instructions
n  The sequence of instructions must

terminate
n  The instructions are precise

n  Unambiguous and uniquely interpreted

n  The instructions are effective
n  Doable, and in a finite amount of time

n  There are inputs and outputs

Example: Making change in dime/
penny land

n  Assumptions
n  Only dimes and pennies
n  Cost < $1

n  Inputs and Outputs
n  Input: price of item
n  Output: number of dimes and pennies to

return from $1 payment

Change-making continued

n  Algorithm
n  Subtract price from $1 and store the result

in change
n  Divide change by 10, and store the integer

result in dimes
n  Divide change by 10 and store the

remainder in pennies
n  Print out the values in dimes and pennies
n  Halt

Software Life Cycle
Problem Analysis and

Specification
n  What needs to be done

Design
n  How it should be done
n  Creation of a solution

(algorithm)
Implementation

n  Implement the
algorithm as a program

Verification
–  Does the program do what

it is supposed to do
–  Does the program not do

what it is not supposed to
do

Maintainance
–  Change what the program

does
–  Includes both bug fixes

and modifications

Problem Analysis and
Specification

n  What it does:
n  Clearly defines problem - what is/is not being

solved
n  Refines imprecise problem to one that is solvable

given existing constraints
n  Constitutes an agreement on what is to be done
n  May discover problems

n  Inconsistency, vagueness, impossibility

n  Leads the way to the solution
n  May contain desirable and optional items

Problem Analysis and Specification
(cont.)

n  What it does (cont.):
n  Should be specific enough to be testable, so you

know if/when the problem has been solved
n  Often done inadequately

n  What it doesn't do:
n  Specify how to solve the problem

n  Important parts of a problem specification
n  A list of inputs
n  A list of constants
n  A list of outputs

Problem Analysis and Specification
(cont.)

n  Examples:
n  Yes: Should calculate change in dime/penny land
n  No: Should be fast
n  Yes: Should run in less than 10 seconds
n  No: Should use quicksort

n  For the programming assignments, I will
provide a problem specification
n  This specification may be incomplete
n  It is your job to analyze and understand the

specification and refine it as necessary

Design

n  What it does:
n  Clearly specifies how the problem will be solved
n  Allows developers to determine what resources will be needed to

solve the problem
n  Hopefully solves all problems that could arise in the development

of the software component
n  Is used as a recipe for doing the actual coding

n  What it doesn’t do:
n  A design is not code and does not contain any code.

n  May contain pseudocode
n  A design is not specific to any language, although it usually is

specific to a type of language

Design (cont.)

A software design typically has 3 parts:
1.  Identification of the data objects that are

required to solve the problem
2.  Identification of the operations that must be

applied to the data objects in order to solve the
problem

3.  Construction of a detailed sequence of steps (an
algorithm) that specifies how the operations can
be applied to the data objects to solve the
problem

Implementation (cont.)

n  Once the design is complete, coding can
begin
n  Given a good design, this should be very

straightforward
n  All hard problems should have been

worked out in the design stage
n  New hard problems should send the

project (temporarily) back to the design
stage

Implementation (cont.)

n  Good code should be
n  Correct
n  Readable and Understandable
n  Modifiable
n  Ideally: Reusable

Implementation
n  Good programs should be:

n  Well structured
n  Break programs into meaningful parts
n  Strive for simplicity and clarity

n  Well documented (commented))
n  Good comments before each program and/or function
n  Good comments before each important part of a program/

function
n  Use meaningful identifiers (function and variable names)

n  Aesthetically pleasing
n  Space things out and use blank lines between logical blocks
n  Use alignment and indentation to emphasize relationships

Verification
n  Each program and subprogram should be

tested against it's requirements
n  To see that it does what it is supposed to do
n  To make sure that it does not do what it is not

supposed to do
n  Tests should include correct and incorrect

inputs
n  Even nonsense inputs

n  Regression tests
n  Make sure that new changes don’t break old

functionality

Maintenance

n  Bugs are found that need to be fixed
n  Requirements change
n  Components are reused
n  Enhancements are made
n  Generally accomplished by repeating

the first four steps
n  Most software development effort is

maintenance

Example: Problem Specification/
Analysis

Problem: Write a program that, given diameter of
a circle, computes the area and circumference

Description: Compute and output the area and
circumference of a circle given the diameter.

Input: Diameter of the circle
Outputs: Area and Circumference of the circle
Constants: Pi, and maybe formulas for area and

circumference of circles

Example: Design

n  Data objects:
n  Variables:

n  Real: diameter, circumference, area, radius
n  Constants:

n  Real: pi
n  Operations:

n  radius = diameter / 2
n  circumference = 2 * pi * radius
n  area = pi * radius 2

Example: Design (cont.)

Algorithm:
1.  Get diameter from user
2.  Calculate radius
3.  Calculate circumference
4.  Calculate area
5.  Print out values of circumference and

area

Example: Implementation
// Calculate area and circumference"
import tio.*; // use the package tio"
class CalcAC {"
 Public static void main () {"
 int diameter; "
 double radius, circumference, area, pi;"
 "Scanner in = new Scanner(System.in);"
 pi = 3.14159625;"
 system.out.println(“Diameter: “);"
 diameter = in.nextInt();"
}"

Example: Implementation
(cont.)
 radius = diameter / 2;"
 circumference = 2 * pi * radius;"
 area = pi * radius * radius;"
"
 system.out.println(“Circumference = “);"
 system.out.println(circumference);"
 system.out.println(“Area = “);"
 system.out.println(area);"
 }"
}

Example: Verification

n  Run the above program with:
n  No input (shouldn't be allowed)
n  Negative input (shouldn't be allowed)
n  Positive input (should work)
n  Fractional input (should work)
n  Very large input (should work)
n  What else?

What’s So Special About
Java?

n  Java is (relatively) new
n  Based heavily on preexisting languages: C, C++,

Pascal, Ada, …
n  Integrates good ideas from all of these, plus some new

ones
n  Integrated with new technologies (especially the web)

n  Java is well structured
n  Everything is contained in classes
n  One class defines one object
n  One class definition per file
n  File names match class names

What’s So Special About
Java?

n  Java is Object Oriented
n  Everything is an object

n  Java is (relatively) easy to use
n  Uniform, simple, well structured

n  Java is web aware
n  Integrated with the web
n  Good communication primitives
n  Integrated into web browsers

What’s So Special About
Java?
n  Applets!

n  Can be executed automatically by the browser
within a web page

n  My code is automatically downloaded and executed on
your machine

n  Java has integrated GUI functionality
n  Good graphical interface functionality fully

integrated into the language.
n  Java is platform independent

n  Runs on Windows, Unix, Mac, and just about
everything else

Reminder

n  Read Chapter 1
n  Read the summary and review

questions
n  If anything is confusing, reread that part of

the chapter
n  Work some or all of the exercises
n  Note: Labs start next week

