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Figure 3-1. Three simple ways of organizing memory with an 
operating system and one user process.  

No Memory Abstraction 
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Figure 3-2. Illustration of the relocation problem.  
 

Multiple Programs  Without Memory 
Abstraction 
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Figure 3-3. Base and limit registers can be used to give each 
process a separate address space. 

Base and Limit Registers 



Figure 3-4. Memory allocation changes as processes come into 
memory and leave it. The shaded regions are unused memory. 

Swapping (1) 
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Figure 3-5. (a) Allocating space for growing data segment. (b) 
Allocating space for growing stack, growing data segment. 

Swapping (2) 
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Figure 3-6. (a) A part of memory with five processes and three 
holes. The tick marks show the memory allocation units. The 

shaded regions (0 in the bitmap) are free. (b) The 
corresponding bitmap. (c) The same information as a list. 

Memory Management with Bitmaps 
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Figure 3-7. Four neighbor combinations  
for the terminating process, X. 

Memory Management with Linked Lists 
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Figure 3-8. The position and function of the MMU – shown as 
being a part of the CPU chip (it  commonly is nowadays). 

Logically it could be a separate chip, was in years gone by. 

Virtual Memory – Paging (1) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 3-9. Relation between virtual addresses and 
physical memory addresses given by page table.  
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Paging (2) 



Figure 3-10. The internal operation of the MMU with 
16 4-KB pages. 

Paging (3) 
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Figure 3-11. A typical page table entry. 

Structure of Page Table Entry 
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Paging implementation issues: 
 
•  The mapping from virtual address to physical 

address must be fast. 
•  If the virtual address space is large, the page table 

will be large. 

Speeding Up Paging 
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Figure 3-12. A TLB to speed up paging. 

Translation Lookaside Buffers 
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Multilevel Page Tables 

Figure 3-13. (a) A 32-bit address with two page table fields.  
(b) Two-level page tables. 



Figure 3-14. Comparison of a traditional page table  
with an inverted page table. 

Inverted Page Tables 
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•  Optimal page replacement algorithm 
•  Not recently used page replacement 
•  First-In, First-Out page replacement 
•  Second chance page replacement 
•  Clock page replacement  
•  Least recently used page replacement 
•  Working set page replacement 
•  WSClock page replacement 

Page Replacement Algorithms 
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        Figure 3-15. Operation of second chance.  
(a) Pages sorted in FIFO order.  
(b) Page list if a page fault occurs at time 20 and A has its R 
bit set. The numbers above the pages are their load times. 

Second Chance Algorithm 
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Figure 3-16. The clock page replacement algorithm. 

The Clock Page Replacement 
Algorithm 
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Figure 3-17. LRU using a matrix when pages are referenced in the 
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3. 

LRU Page Replacement Algorithm 
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Figure 3-18. The aging algorithm simulates LRU in software. 
Shown are six pages for five clock ticks. The five clock ticks 

are represented by (a) to (e). 

Simulating LRU in Software 
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Figure 3-19. The working set is the set of pages used by the k 
most recent memory references. The function w(k, t) is the 

size of the working set at time t. 

Working Set Page Replacement (1) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 3-20. The working set algorithm. 

Working Set Page Replacement (2) 
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When the hand comes all the way around to its  
starting point  there are two cases to consider: 

 
•  At least one write has been scheduled. 
•  No writes have been scheduled. 

The WSClock Page Replacement Algorithm (1) 
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Figure 3-21. Operation of the WSClock algorithm. (a) and (b) give 
an example of what happens when R = 1. 

The WSClock Page Replacement Algorithm (2) 
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Figure 3-21. Operation of the WSClock algorithm.  
(c) and (d) give an example of R = 0. 

The WSClock Page  Replacement Algorithm (3) 
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Figure 3-22. Page replacement algorithms discussed in the text. 

Summary of Page Replacement Algorithms 
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Figure 3-23. Local versus global page replacement.  
(a) Original configuration. (b) Local page replacement.  

(c) Global page replacement. 

Local versus Global Allocation Policies (1) 
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Figure 3-24. Page fault rate as a function  
of the number of page frames assigned. 

Local versus Global Allocation Policies (2) 
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Figure 3-25. (a) One address space.  
(b) Separate I and D spaces. 

Separate Instruction and Data Spaces 
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Figure 3-26. Two processes sharing the same program  
sharing its page table. 

Shared Pages 
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Figure 3-27. A shared library being used by two processes. 

Shared Libraries 
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•  The hardware traps to the kernel, saving the 
program counter on the stack. 

•  An assembly code routine is started to save the 
general registers and other volatile information. 

•  The operating system discovers that a page 
fault has occurred, and tries to discover which 
virtual page is needed. 

•  Once the virtual address that caused the fault is 
known, the system checks to see if this address 
is valid and the protection consistent with the 
access 

Page Fault Handling (1) 
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•  If the page frame selected is dirty, the page is 
scheduled for transfer to the disk, and a context 
switch takes place. 

•  When page frame is clean, operating system 
looks up the disk address where the needed 
page is, schedules a disk operation to bring it in. 

•  When disk interrupt indicates page has arrived, 
page tables updated to reflect position, frame 
marked as being in normal state. 

Page Fault Handling (2) 
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•  Faulting instruction backed up to state it had 
when it began and program counter reset to 
point to that instruction. 

•  Faulting process scheduled, operating system 
returns to the (assembly language) routine that 
called it. 

•  This routine reloads registers and other state 
information and returns to user space to 
continue execution, as if no fault had occurred. 

Page Fault Handling (3) 
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Figure 3-28. An instruction causing a page fault. 

Instruction Backup 
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Figure 3-29. (a) Paging to a static swap area.  

Backing Store (1) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 3-29. (b) Backing up pages dynamically. 

Backing Store (2) 
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Memory management system is divided into  
three parts: 
 
•  A low-level MMU handler. 
•  A page fault handler that is part of the kernel. 
•  An external pager running in user space. 

Separation of Policy and Mechanism (1) 
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Figure 3-30. Page fault handling with an external pager. 

Separation of Policy and Mechanism (2) 
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A compiler has many tables that are built up as 
compilation proceeds, possibly including: 
 

•  The source text being saved for the printed listing (on 
batch systems). 

•  The symbol table – the names and attributes of variables. 
•  The table containing integer, floating-point constants 

used. 
•  The parse tree, the syntactic analysis of the program. 
•  The stack used for procedure calls within the compiler. 

Segmentation (1) 
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Figure 3-31. In a one-dimensional address space with growing 
tables, one table may bump into another. 

Segmentation (2) 
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Figure 3-32. A segmented memory allows each table to grow or 
shrink independently of the other tables. 

Segmentation (3) 
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Figure 3-33. Comparison of paging and segmentation. 

Implementation of Pure Segmentation 
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Figure 3-34. (a)-(d) Development of checkerboarding. (e) Removal 
of the checkerboarding by compaction. 

Segmentation with Paging: MULTICS (1) 
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Figure 3-35. The MULTICS virtual memory. (a) The 
descriptor segment points to the page tables. 

Segmentation with Paging: MULTICS (2) 
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Figure 3-35. The MULTICS virtual memory. (b) A segment 
descriptor. The numbers are the field lengths. 

Segmentation with Paging: MULTICS (5) 
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When a memory reference occurs, the following 
algorithm is carried out: 

 
•  The segment number used to find segment descriptor. 
•  Check is made to see if the segment’s page table is in 

memory.  
–  If not, segment fault occurs.  
–  If there is a protection violation, a fault (trap) occurs. 

Segmentation with Paging: MULTICS (6) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



•  Page table entry for the requested virtual page 
examined. 
–  If the page itself is not in memory, a page fault is 

triggered. 
–  If it is in memory, the main memory address of the 

start of the page is extracted from the page table entry 
•  The offset is added to the page origin to give the 

main memory address where the word is located. 
•  The read or store finally takes place. 

Segmentation with Paging: MULTICS (7) 
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Figure 3-36. A 34-bit MULTICS virtual address. 

Segmentation with Paging: MULTICS (8) 
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Figure 3-37. Conversion of a two-part MULTICS address into a 
main memory address. 

Segmentation with Paging: MULTICS (9) 
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Figure 3-38. A simplified version of the MULTICS TLB. The 
existence of two page sizes makes the actual TLB more 

complicated. 

Segmentation with Paging: MULTICS (10) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 3-39. A Pentium selector. 

Segmentation with Paging: The Pentium (1) 
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Figure 3-40. Pentium code segment descriptor.  
Data segments differ slightly. 

Segmentation with Paging: The Pentium (2) 
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Figure 3-41. Conversion of a (selector, offset)  
pair to a linear address. 

Segmentation with Paging: The Pentium (3) 
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Figure 3-42. Mapping of a linear address onto a physical address. 

Segmentation with Paging: The Pentium (4) 
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Figure 3-43. Protection on the Pentium. 

Segmentation with Paging: The Pentium (5) 
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