
Chapter 8: Process Control

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167

Process Identifiers

Guaranteed to be unique for each currently
executing process on a single computer
Usually sequentially allocated
Some systems services have PIDs as well

0: scheduler/swapper
1: init
2: pagedaemon

Related Functions
#include <sys/types.h>
#include <unistd.h>
pid_t getpid(void);

Returns PID of calling process
pid_t getppid(void);

Returns PID of parent of calling process
uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void)

Return real or effective UID or GID for calling process

Fork
#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);
Fork creates a new process

The new process is an exact clone of the calling process
This is the only way to create a process in Unix
Fork returns

The PID of the newly created process to the parent process
0 to the newly created child process

Fork details
The child is a clone of the parent
It has a copy of the parent’s

Address space (heap, stack, variables, stdio bufs)
File descriptors
Code (may be shared, since it is read-only)

After the fork() call, each process executes as
though it was the one that called fork()

The only difference is the return value from fork()
Usually, different code paths are taken based on a
test of the PID returned

File Sharing between Parent
and Child

Each process has its own file descriptors
The underlying kernel structures for
managing the files are shared
Specifically, the offsets are shared
This means that shared output to the
same file will work correctly
Important if stdout has been redirected
to a file

Normal cases

Input and output isn’t redirected, so it
doesn’t matter
Parent waits for child to finish

Parent gets updated file pointers when it
resumes executing

Child redirects it’s input/output so no
shared file pointers

Other Shared Info
Real & effective user and group IDs
Supplementary group IDs
Session ID
Controlling terminal
set-user-ID and set-group-ID flags
Current working directory
Root directory
File mode creation mask
Signal mask and dispositions
The close-on-exec flag for any open file descriptors
Environment
Attached shared memory segments
Resource limits

Things that are Not Inherited
by the Child

The return value from fork()
The process IDs
The process ID of the parent
The accumulated CPU time
File locks
Pending alarms
Pending signals

Exit
Three ways to terminate normally and two ways to
terminate abnormally
Normal Termination

Return from main()
Call exit() (C library function)

Cleans up standard I/O then calls _exit()
Call _exit() (underlying system call)

Abnormal Termination
Receive certain signals from parent or kernel
Call abort (sends SIGABRT to self)

Termination status: exit parameter or other kernel-
generated status

Process Termination Details
When a process terminates, the parent
receives SIGCHLD
wait() allows a parent process to wait for a
child process to terminate
When a process terminates, the kernel
maintains a small amount of info until the
parent calls wait()

Such a process is a zombie until the parent calls
wait()

If the parent terminates first, child is
inherited by init

When a Process Terminates

The parent process receives a SIGCHLD
Parent can

Ignore the signal (the default action), or
Set up a signal handler to be called when the
signal arrives

Use wait() to wait for the child to finish
Blocks parent
Returns when a child process terminates

Returns immediately if any child is a zombie
Returns child’s PID

wait() and waitpid()
#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *statloc);

Wait for any child process to terminate
pid_t waitpid(pid_t pid, int *statloc, int options);

Wait for a specific child process to terminate
Statloc contains the child’s termination status (the
child’s parameter to exit(), possibly with extra
information – see the man page (section 2) for
wait())

Race Conditions
A race condition is any situation where two (or more)
processes access shared data, AND
The outcome of the processing depends upon the
order in which the processes execute
Example: two processes do x=x+1, where x is a
shared variable
Need some form of synchronization

Signals
File locks
Semaphores
…

Running a Different Program
fork() allows us to clone a process

The clone is a duplicate of the parent
It runs the same program as the parent

We want to be able to run different programs, not
just clones
exec() allows us to run a different program in the
current process

Often closely follows a call to fork()
fork() creates a new process, and exec() makes it run
a new program

Same PID, new text, data, BSS, stack, heap

exec()
#include <unistd.h>
int execl(const char *pathname, const char *arg0, …
/* (char *)0 */);
int execv(const char *pathname, char const *argv[]);
int execle(const char *pathname, const char *arg0,
…/*(char *)0 */, char *const envp[]);
int execve(const char *pathname, char const *argv[],
char *const envp[]);
int execlp(const char *filename, const char *arg0, …
/* (char *) 0 */);
int execvp(const char *filename, char *const argv[]);

Variations of exec()

l versions use a list of parameters
v versions use an argv[] parameter
e versions include an environment
parameter
p versions search PATH for executable

Probably the one you want for assignment
4

Changing User and Group IDs
#include <sys/types.h>
#include <unistd.h>
int setuid(uid_t uid);
int setgid(gid_t gid);
If the process has superuser privileges

setuid() sets the real user ID, effective user ID, and saved
set-user-ID to uid

If the process does not have superuser privileges,
but uid = the real user ID or the save set-user-ID

setuid sets the effective user ID to uid
If neither is true, errno is set to EPERM and an error
is returned

Facts about the three user IDs

Only a superuser process can change the real
user ID
The effective user ID is set by the exec
functions, only if the setuid bit is set for the
program file

Can call setuid any time to set the effective user
ID to the real user ID or the saved set-user-ID

The saved set-user-ID is copied from the
effective user ID by exec

Other functions

int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);
Swap real and effective user/group IDs
int seteuid(uid_t uid);
int setegid(gid_t gid);
Set effective user/group ID

Interpreter Files

Text files with: #! pathname [args] on
the first line
Recognized by the kernel
Kernel starts the interpreter specified by
pathname, and
Redirects the rest of the file to the
interpreter’s stdin

System()

#include <stdlib.h>
int system(char *cmdstring);
Does fork(), exec(), and waitpid() to
execute cmdstring
Waits for any old child to finish
Don’t call system in a set-user-ID
program

Process Times
#include <sys/times.h>
clock_t times(struct tms *buf);
Fills in the tms struct and returns the current clock
time (in seconds)
struct tms {

clock_t tms_utime; // user CPU time
clock_t tms_stime; // system CPU time
clock_t tms_cutime; // user CPU time of terminated child
processes
clock_t tms_cstime; // system CPU time of terminated child
processes

}

/proc

See man –s4 proc
Provides access to the state of each process
and light-weight process in the system
The name of the entry for a process is
/proc/pid, where pid is the PID of the process
Actual process state is contained in files in
that directory
The owner of the files is determined by the
user ID of the process it describes

Accessing /proc
Standard system calls are used to access /proc:
open(), close(), read(), and write()
Most files can only be opened for reading
ctl and lwpctl (control) files can only be opened for
writing
as (address space) files contain the image of the
running process and can be opened for reading and
writing

Data can be transferred to and from the address space using
read and write

Files can be opened exclusively with O_EXCL
Advisory, i.e. only works if everyone does it

Information and Control
Operations

#include <procfs.h>
Contains definitions of data structures and
message formats used with these files

Every process contains at least one LWP
Each LWP represents a flow of execution
that is independently scheduled by the OS
All LWPs in a process share its address
space and many other attributes
We should stop and discuss threads here

/proc Directory Structure
as (R/W): address space image, can seek
ctl (W): messages can be written to control process
state or behavior
status (R): state information
psinfo (R): miscellaneous information
cred (R): description of the credentials
sigact (R): array of sigaction structures
map (R): virtual address map
fd (R): directory containing references to open files
usage (R): usage info (times, faults, blocks, msgs,
sigs, syscalls, context switches)

• typedef struct pstatus {
• int pr_flags; /* flags (see below) */
• int pr_nlwp; /* number of lwps in the process */
• pid_tpr_pid; /* process id */
• pid_tpr_ppid; /* parent process id */
• pid_tpr_pgid; /* process group id */
• pid_tpr_sid; /* session id */
• id_t pr_aslwpid; /* lwp-id of the aslwp, if any */
• id_t pr_agentid; /* lwp-id of the agent lwp, if any */
• sigset_t pr_sigpend; /* set of process pending signals */
• uintptr_t pr_brkbase; /* virtual address of the process heap */
• size_t pr_brksize; /* size of the process heap, in bytes */
• uintptr_t pr_stkbase; /* virtual address of the process stack */
• size_tpr_stksize; /* size of the process stack, in bytes */
• timestruc_t pr_utime; /* process user cpu time */
• timestruc_t pr_stime; /* process system cpu time */
• timestruc_t pr_cutime; /* sum of children's user times */
• timestruc_t r_cstime; /* sum of children's system times */
• sigset_t pr_sigtrace; /* set of traced signals */
• fltset_t pr_flttrace; /* set of traced faults */
• sysset_t pr_sysentry; /* set of system calls traced on entry */
• sysset_t pr_sysexit; /* set of system calls traced on exit */
• char pr_dmodel; /* data model of the process */
• taskid_t pr_taskid; /* task id */
• projid_t pr_projid; /* project id */
• lwpstatus_t pr_lwp; /* status of the representative lwp */
• } pstatus_t;

• typedef struct psinfo {
• int pr_flag; /* process flags */
• int pr_nlwp; /* number of lwps in the process */
• pid_t pr_pid; /* process id */
• pid_t pr_ppid; /* process id of parent */
• pid_t pr_pgid; /* process id of process group leader */
• pid_t pr_sid; /* session id */
• uid_t pr_uid; /* real user id */
• uid_t pr_euid; /* effective user id */
• gid_t pr_gid; /* real group id */
• gid_t pr_egid; /* effective group id */
• uintptr_t pr_addr; /* address of process */
• size_t pr_size; /* size of process image in Kbytes */
• size_t pr_rssize; /* resident set size in Kbytes */
• dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
• ushort_t pr_pctcpu; /* % of recent cpu time used by all lwps */
• ushort_t pr_pctmem; /* % of system memory used by process */
• timestruc_t pr_start; /* process start time, from the epoch */
• timestruc_t pr_time; /* cpu time for this process */
• timestruc_t pr_ctime; /* cpu time for reaped children */
• taskid_t pr_taskid; /* task id */
• projid_t pr_projid; /* project id */
• char pr_fname[PRFNSZ]; /* name of exec'ed file */
• char pr_psargs[PRARGSZ]; /* initial characters of arg list */
• int pr_wstat; /* if zombie, the wait() status */
• int pr_argc; /* initial argument count */
• uintptr_t pr_argv; /* address of initial argument vector */
• uintptr_t pr_envp; /* address of initial environment vector */
• char pr_dmodel; /* data model of the process */
• lwpsinfo_t pr_lwp; /* information for representative lwp */
• } psinfo_t;

	Chapter 8: Process Control
	Process Identifiers
	Related Functions
	Fork
	Fork details
	File Sharing between Parent and Child
	Normal cases
	Other Shared Info
	Things that are Not Inherited by the Child
	Exit
	Process Termination Details
	When a Process Terminates
	wait() and waitpid()
	Race Conditions
	Running a Different Program
	exec()
	Variations of exec()
	Changing User and Group IDs
	Facts about the three user IDs
	Other functions
	Interpreter Files
	System()
	Process Times
	/proc
	Accessing /proc
	Information and Control Operations
	/proc Directory Structure

