Chapter 7: The Environment

!'_ of a Unix Process

CMPS 105: Systems Programming
Prof. Scott Brandt
T Th 2-3:45
Soc Sci 2, Rm. 167

i The main() function

= Int main(int argc, char *arg]);
= argc = number of command-line arguments

= argv = array of pointers to the (string)
arguments

= main() Is the first thing called in the program

= A special start-up routine is called first
(specified in the executable)
= That's what sets up the parameters to main

i Process Termination

= Five ways to terminate a process

= Normal termination
= return from main()
« call exit()
» call _exit()

= Abnormal termination
= call abort()
» terminate by a signal

i exit() and exit()

= #include <stdlib.nh> (ANSI C)

= Void exit(int status);

= Performs a clean shutdown of the standard
1/0 library

= #include <unistd.h> (POSIX)
= void _exit(int status),
= Exit status undefined if not specified

i atexit()

= ANSI C: A process can register up to 32
hand/er functions to execute when the
program exits

= Typically used to clean up
= #include <stdlib.h>
= Int atexit(void (* func)(void));

= funcis a pointer to a function that takes no
parameters

= Specified by using the name of the function
(without parantheses)

i Exit handling

= Draw and discuss Figure 7.1 on page
164

i Command-line arguments

= Programs can pass command-line parameters
#include <ourhdr.h>
Int main(int argc, char *argv[]) {
Int I;
for(i=0; 1| < argc; 1++)
print(“argv[%d]: %s\n”, I, argv]i]);
exit(0);
}

i Environment List

= Each program is passed an environment
list
= extern char **environ;

= Each environment string consists of
name=value

= Most names are uppercase

= Usually ignored, but can be useful

Memory Layout of a C
Program

m [ext segment
= The machine instructions of the program
= Usually sharable and read-only
= Data segment (initialized data)
= Global variables that are initialized in the program
= BSS (uninitialized data)
= Global variables that are not initialized in the program
= Initialized to zero or null pointers
= Stack (automatic variables)
= Function return information
= Local variables
= Heap
= Dynamic memory allocation
= See figure 7.3 on page 168

i Shared Libraries

= Single shared copy of common library
routines

= Instead of each one being copied in each
program

= Big space savings
= 24576 vs. 104859 for hello world
= For detalls, see comparison on page 169

Memory Allocation

= #Hinclude <stdlib.h>
= Vvoid *malloc(size_t size);
= Allocates the specified number of bytes
= Uninitialized
= Vvoid *calloc(size_t noby, size t size),
= Allocates space for the specified number of objects
= Initialized to all Os
= Vvoid *realloc(void *pftr, size t newsize);
= Changes the size of a previously allocated area
= May move to a new location (and copy old contents)
= New area is uninitialized
= Vvoid *free(void *ptr);
= Frees allocated space

Common mistakes

Writing past the end of an allocated region or variable
= Overwrites record-keeping information or other data
= Really, really hard to find
Failing to free memory
= Memory leaks
= Big problem when not using virtual memory
Freeing memory more than once
= May cause memory to be allocated twice!
Calling free() with a bad pointer
= Free tries to free up whatever is pointed to by the pointer
Can be caught with special memory management functions
= Not automatically checked because of overhead involved

i alloca

= Allocates memory from the stack
s Doesn’t have to be freed

= Doesn’t live past the return from the
calling function

i Environment variables

= Used by applications only (not the
kernel)

= hame=value
= Common: HOME, USER, PRINTER, etc.
s #include <stdlib.h>

= char *getenv(const char *name),
=« Returns null if not found

i Other Environment functions

= Int putenv(const char *str);
= Creates (or overwrites) environment variable

= Int setenv(const char *name, const char
*value, Int rewrite);
= Same as putenv (modulo params), except
= Does nothing if rewrite = 0 and old value exists

= Int unsetenv(const char *name);
= Clears an environment variable

i setjmp() and longjmp()

= Allow gotos from lower In a call stack to
higher in a call stack

= setjmp sets up the location to jump to
= longjmp jumps there

s Parameter contains the environment of
the function that will be jumped to

s Bottom line: don’t use these!

i getrlimit and setrlimit

Query and change resource limits

#include <sys/time.h>

#include <sys/resource.h>

Int getrlimit(int resource, struct rlimit *riptr);

Int setrlimit(int resource, const struct rlimit
*riptr);
struct rlimit {
rlim_t rlim_cur; /* soft limit: current limit */
rlim_t rlim_max; /* hard limit: max value */

}

Resources

RLIM_INFINITY = unbounded

RLIMIT_CORE: max core file size (0 = none)

RLIMIT_CPU: max CPU time in seconds

RLIMIT_DATA: max size of data segment

RLIMIT_FSIZE: max size in bytes of a file that may be created
RLIMIT_MEMLOCK: locked-in memory space

RLIMIT_NOFILE: max # open files

RLIMIT_NPROC: max # of child processes per real user ID
RLIMIT_OFILE: same as RLIMIT_NOFILE

RLIMIT_RSS: max resident set size in bytes (max memory footprint)
RLIMIT_STACK: max stack size

RLIMIT_VMEM: max size of mapped address space (affects mmap)

	Chapter 7: The Environment of a Unix Process
	The main() function
	Process Termination
	exit() and _exit()
	atexit()
	Exit handling
	Command-line arguments
	Environment List
	Memory Layout of a C Program
	Shared Libraries
	Memory Allocation
	Common mistakes
	alloca
	Environment variables
	Other Environment functions
	setjmp() and longjmp()
	getrlimit and setrlimit
	Resources

