
Chapter 7: The Environment
of a Unix Process

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167

The main() function

int main(int argc, char *argv[]);
argc = number of command-line arguments
argv = array of pointers to the (string)
arguments
main() is the first thing called in the program
A special start-up routine is called first
(specified in the executable)

That’s what sets up the parameters to main

Process Termination

Five ways to terminate a process
Normal termination

return from main()
call exit()
call _exit()

Abnormal termination
call abort()
terminate by a signal

exit() and _exit()

#include <stdlib.h> (ANSI C)
void exit(int status);

Performs a clean shutdown of the standard
I/O library

#include <unistd.h> (POSIX)
void _exit(int status);
Exit status undefined if not specified

atexit()
ANSI C: A process can register up to 32
handler functions to execute when the
program exits

Typically used to clean up
#include <stdlib.h>
int atexit(void (*func)(void));
func is a pointer to a function that takes no
parameters

Specified by using the name of the function
(without parantheses)

Exit handling

Draw and discuss Figure 7.1 on page
164

Command-line arguments

Programs can pass command-line parameters
#include <ourhdr.h>
int main(int argc, char *argv[]) {

int i;
for(i=0; i < argc; i++)

print(“argv[%d]: %s\n”, i, argv[i]);
exit(0);

}

Environment List

Each program is passed an environment
list
extern char **environ;
Each environment string consists of
name=value
Most names are uppercase
Usually ignored, but can be useful

Why?

Memory Layout of a C
Program

Text segment
The machine instructions of the program
Usually sharable and read-only

Data segment (initialized data)
Global variables that are initialized in the program

BSS (uninitialized data)
Global variables that are not initialized in the program
Initialized to zero or null pointers

Stack (automatic variables)
Function return information
Local variables

Heap
Dynamic memory allocation

See figure 7.3 on page 168

Shared Libraries

Single shared copy of common library
routines

Instead of each one being copied in each
program

Big space savings
24576 vs. 104859 for hello world
For details, see comparison on page 169

Memory Allocation
#include <stdlib.h>
void *malloc(size_t size);

Allocates the specified number of bytes
Uninitialized

void *calloc(size_t nobj, size_t size);
Allocates space for the specified number of objects
Initialized to all 0s

void *realloc(void *ptr, size_t newsize);
Changes the size of a previously allocated area
May move to a new location (and copy old contents)
New area is uninitialized

void *free(void *ptr);
Frees allocated space

Common mistakes
Writing past the end of an allocated region or variable

Overwrites record-keeping information or other data
Really, really hard to find

Failing to free memory
Memory leaks
Big problem when not using virtual memory

Freeing memory more than once
May cause memory to be allocated twice!

Calling free() with a bad pointer
Free tries to free up whatever is pointed to by the pointer

Can be caught with special memory management functions
Not automatically checked because of overhead involved

alloca

Allocates memory from the stack
Doesn’t have to be freed
Doesn’t live past the return from the
calling function

Environment variables

Used by applications only (not the
kernel)
name=value
Common: HOME, USER, PRINTER, etc.
#include <stdlib.h>
char *getenv(const char *name);

Returns null if not found

Other Environment functions

int putenv(const char *str);
Creates (or overwrites) environment variable

int setenv(const char *name, const char
*value, int rewrite);

Same as putenv (modulo params), except
Does nothing if rewrite = 0 and old value exists

int unsetenv(const char *name);
Clears an environment variable

setjmp() and longjmp()

Allow gotos from lower in a call stack to
higher in a call stack
setjmp sets up the location to jump to
longjmp jumps there
Parameter contains the environment of
the function that will be jumped to
Bottom line: don’t use these!

getrlimit and setrlimit
Query and change resource limits
#include <sys/time.h>
#include <sys/resource.h>
int getrlimit(int resource, struct rlimit *rlptr);
int setrlimit(int resource, const struct rlimit
*rlptr);
struct rlimit {

rlim_t rlim_cur; /* soft limit: current limit */
rlim_t rlim_max; /* hard limit: max value */

}

Resources
RLIM_INFINITY = unbounded
RLIMIT_CORE: max core file size (0 = none)
RLIMIT_CPU: max CPU time in seconds
RLIMIT_DATA: max size of data segment
RLIMIT_FSIZE: max size in bytes of a file that may be created
RLIMIT_MEMLOCK: locked-in memory space
RLIMIT_NOFILE: max # open files
RLIMIT_NPROC: max # of child processes per real user ID
RLIMIT_OFILE: same as RLIMIT_NOFILE
RLIMIT_RSS: max resident set size in bytes (max memory footprint)
RLIMIT_STACK: max stack size
RLIMIT_VMEM: max size of mapped address space (affects mmap)

	Chapter 7: The Environment of a Unix Process
	The main() function
	Process Termination
	exit() and _exit()
	atexit()
	Exit handling
	Command-line arguments
	Environment List
	Memory Layout of a C Program
	Shared Libraries
	Memory Allocation
	Common mistakes
	alloca
	Environment variables
	Other Environment functions
	setjmp() and longjmp()
	getrlimit and setrlimit
	Resources

