Chapter 5: Standard 1/0

!'_ Library

CMPS 105: Systems Programming
Prof. Scott Brandt
T Th 2-3:45
Soc Sci 2, Rm. 167



i Introduction

= The Standard 1/0 library
= Is a library of user-level functions
= Runs as part of application programs

= Serves as a layer between apps and the OS
system calls

= Implements read and write buffering
= Deals with details like block sizes



i Streams and FILE Objects

= File 1/0 (from Ch. 3)
= System calls
= Uses file descriptors to identify which file
= No buffering — direct file access

s Standard 1/0

= User-level library

= Uses streams

= Uses FILE pointers to identify files
= Buffered



Standard Input, Output, and

i Error

= Three predefined streams
= Standard Input: stdin
« Standard Output: stdout
= Standard Error: stderr

s Defined in <stdio.h>
s These refer to the same “files” as the three

file descriptors

= STDIN_FILENO, STDOUT_FILENO,
STDERR_FILENO




i Buffering

= Goal: Reduce number of read() and
write() system calls

= And thereby reduce 1/0 overhead
= Buffering automatic for each 1/0 stream
= Three types of buffering

« Fully buffered

= Line buffered
= Unbuffered



i Fully Buffered

= Typically used with files

= Actual 1/0 occurs when
= Reading: buffer is empty and needs to be filled
= Writing: buffer is full and needs to be emptied
= Flushing. writing the buffer to disk

= Automatically — when the buffer is full
=« Manually — when fflush() is called



Line Buffered

= Typically used with terminal devices

= Actual 1/0 occurs
= When a newline character is encountered on input or output
= Allows for character-at-a-time application output without
excessive 1/0 overhead

s Caveats:

= Since buffer size is fixed, output might occur before newline
« If buffer fills up, it has to be written
= All line-buffered output buffers are flushed whenever input is
requested from either
= an unbuffered stream, or

= a line-buffered stream (that requires data to be requested from
the kernel



i Unbuffered

= Used with standard error stream
= Causes output to be displayed immediately

= May be used elsewhere
= No buffering is performed



i Buffering requirements

= ANSI C

« Standard input and output are fully buffered, if
and only if they do not refer to an interactive
device (like a terminal)

= Standard error is never fully buffered

= SVR4 and 4.3+BSD
= Standard error is always unbuffered
= Terminal device streams are line buffered
= All other streams are fully buffered



i Changing buffering

s #include <stdio.h>

= void setbuf(FILE *7p, char *buh;
= Toggles buffering (i.e. turns buffering on or off)
= Usually all we need

= Int setvbuf(FILE *7p, char *buf, int mode,
size t size);
= Sets buffering to a particular type:
« Fully buffered: 10FBF

« Line buffered: IOLBF
=« Unbuffered: IONBF



i Flushing the buffers

s #include <stdio.h>

= Int fflush(FILE *7p);

= Flushes specified stream
» If fp = NULL, flushes all output streams

= Can be used to force data to be written
= Timely output (must be output now)
« Output with a required order

= Critical output (must be output before program
continues)



i Opening a stream

s #include <stdio.h>

= FILE *fopen(const char *pathname, const
char *type);
= Open the specified file

= FILE *freopen(const char *pathname, const
char *type, FILE */p);

= Open the specified file using the specified stream

» FILE *fdopen(int fildes, const char *#ype);

= Create a stream to correspond to the specified file
descriptor (obtained from an open() call)



i Details

Types: r (read), w (write) , a (append), r+ (read/write), w+
(truncate/read/write), a+ (seek to end/read/write)
= When a file is opened for reading and writing

= Input cannot directly follow output without an intervening fflush(),
fseek(), fsetpos(), or rewind()

= Output cannot directly follow input without an intervening fseek(),
fsetpos(), rewind(), or an input operation that encounters an end
of file

= Otherwise, data can be lost
= Note: can't specify file permissions
= They default to RW for user, group, and other

= Buffering can be changed only after open and before first
access



i Closing a stream

= #include <stdio.h>
= Int fclose(FILE */p);

= When a process exits normally, all streams
are automatically closed

= But not when a process crashes
= When an output stream is closed, all buffered
data Is flushed

= When a process crashes, buffered output data is
lost



i Reading and Writing Streams

= Three types of unformatted 1/0
= Independent of buffering options!

= Character at a time 1/0
= Read/write one character at a time

= LIne at a time 1/0
= Read/write one line at a time

= Direct 1/0
= Read/write one or more objects at a time



i Character at a time input

s #Hinclude <stdio.h>
= Int getc(FILE *7p);

= MACRO: Get one character from the specified
stream

= Int fgetc(FILE */p);

= FUNCTION: Get one character from the specified
stream

= Int getchar(void);
= Get one character from stdin



i More character at a time input

= Decoding errors
» ferror(FILE *7p);

= Returns true if the error was a real error

= feof(FILE */p);
« Returns true if the end of file was reached
= Int ungetc(int ¢, FILE *7/p);

= Forces one character back onto the specified
stream

= Usually used to check a character (i.e. “did we
reach a space?” without consuming it)



i Character at a time output

s #include <stdio.h>

= int putc(int ¢, FILE *7p);

= MACRO: Put one character (note that it is an int)
onto the designated output stream

= int fputc(int ¢, FILE *7/p);

= FUNCTION: Put one character (note that it is an
Int) onto the designated output stream

= Int putchar(int ©);
= Put one character (int) onto stdout



i Line at a time input

s #include <stdio.h>

= char *fgets(char *buf, int n, FILE */p);
= Read one line from the specified input stream

= Read until newline or until bufis full (-1
characters);

= char *gets(char *bub;
= Read one line from stdin
= Deprecated due to buffer overflow potential



i Line at a time output

s #include <stdio.h>

= int fputs(const char *str, FILE *1p);

= Put one line (null-terminated) onto the
specified output stream

= Int puts(const char *str);
= Put one line (null-terminated) onto stdout



i Standard 1/0 Efficiency

= Standard 1I/0 can be more efficient because of buffering
s Can be less efficient because of extra code

Function User CPU System CPU Clock Time Bytes of
(seconds) (seconds) (seconds) Program Text

Best file 1/0 0.0 0.3 0.3

fgets, fputs 2.2 0.3 2.6 184

getc, putc 4.3 0.3 4.8 384

fgetc, fputc 4.6 0.3 5.0 152

Worst file 1/0 23.8 397.9 423.4




‘L Binary 1/0

s Section 5.9



‘L Positioning a stream

s Section 5.10



‘L Formatted output

s Section 5.11



i Formatted input

s Section 5.11



‘L Implementation Details

s Section 5.12



i Temporary Files

s Section 5.13



i Alternatives to Standard 1/0

s Section 5.14
= We didn’t discuss this in class



	Chapter 5: Standard I/O Library
	Introduction
	Streams and FILE Objects
	Standard Input, Output, and Error
	Buffering
	Fully Buffered
	Line Buffered
	Unbuffered
	Buffering requirements
	Changing buffering
	Flushing the buffers
	Opening a stream
	Details
	Closing a stream
	Reading and Writing Streams
	Character at a time input
	More character at a time input
	Character at a time output
	Line at a time input
	Line at a time output
	Standard I/O Efficiency
	Binary I/O
	Positioning a stream
	Formatted output
	Formatted input
	Implementation Details
	Temporary Files
	Alternatives to Standard I/O

