
Chapter 5: Standard I/O 
Library

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167



Introduction

The Standard I/O library
Is a library of user-level functions
Runs as part of application programs
Serves as a layer between apps and the OS 
system calls
Implements read and write buffering
Deals with details like block sizes



Streams and FILE Objects

File I/O (from Ch. 3)
System calls
Uses file descriptors to identify which file
No buffering – direct file access

Standard I/O
User-level library
Uses streams
Uses FILE pointers to identify files
Buffered



Standard Input, Output, and 
Error

Three predefined streams
Standard Input: stdin
Standard Output: stdout
Standard Error: stderr

Defined in <stdio.h>
These refer to the same “files” as the three 
file descriptors

STDIN_FILENO, STDOUT_FILENO, 
STDERR_FILENO



Buffering

Goal: Reduce number of read() and 
write() system calls

And thereby reduce I/O overhead
Buffering automatic for each I/O stream
Three types of buffering

Fully buffered
Line buffered
Unbuffered



Fully Buffered

Typically used with files
Actual I/O occurs when

Reading: buffer is empty and needs to be filled
Writing: buffer is full and needs to be emptied

Flushing: writing the buffer to disk
Automatically – when the buffer is full
Manually – when fflush() is called



Line Buffered
Typically used with terminal devices
Actual I/O occurs

When a newline character is encountered on input or output
Allows for character-at-a-time application output without 
excessive I/O overhead

Caveats:
Since buffer size is fixed, output might occur before newline

If buffer fills up, it has to be written
All line-buffered output buffers are flushed whenever input is 
requested from either

an unbuffered stream, or
a line-buffered stream (that requires data to be requested from 
the kernel



Unbuffered

Used with standard error stream
Causes output to be displayed immediately

May be used elsewhere
No buffering is performed



Buffering requirements

ANSI C
Standard input and output are fully buffered, if 
and only if they do not refer to an interactive 
device (like a terminal)
Standard error is never fully buffered

SVR4 and 4.3+BSD
Standard error is always unbuffered
Terminal device streams are line buffered
All other streams are fully buffered



Changing buffering

#include <stdio.h>
void setbuf(FILE *fp, char *buf);

Toggles buffering (i.e. turns buffering on or off)
Usually all we need

int setvbuf(FILE *fp, char *buf, int mode, 
size_t size);

Sets buffering to a particular type:
Fully buffered: _IOFBF
Line buffered: _IOLBF
Unbuffered: _IONBF



Flushing the buffers

#include <stdio.h>
int fflush(FILE *fp);

Flushes specified stream
If fp = NULL, flushes all output streams

Can be used to force data to be written
Timely output (must be output now)
Output with a required order
Critical output (must be output before program 
continues)



Opening a stream
#include <stdio.h>
FILE *fopen(const char *pathname, const 
char *type);

Open the specified file
FILE *freopen(const char *pathname, const 
char *type, FILE *fp);

Open the specified file using the specified stream
FILE *fdopen(int fildes, const char *type);

Create a stream to correspond to the specified file 
descriptor (obtained from an open() call)



Details
Types: r (read), w (write) , a (append), r+ (read/write), w+ 
(truncate/read/write), a+ (seek to end/read/write)
When a file is opened for reading and writing

Input cannot directly follow output without an intervening fflush(), 
fseek(), fsetpos(), or rewind()
Output cannot directly follow input without an intervening fseek(), 
fsetpos(), rewind(), or an input operation that encounters an end 
of file
Otherwise, data can be lost

Note: can’t specify file permissions
They default to RW for user, group, and other

Buffering can be changed only after open and before first 
access



Closing a stream

#include <stdio.h>
int fclose(FILE *fp);
When a process exits normally, all streams 
are automatically closed

But not when a process crashes
When an output stream is closed, all buffered 
data is flushed

When a process crashes, buffered output data is 
lost



Reading and Writing Streams

Three types of unformatted I/O
Independent of buffering options!
Character at a time I/O

Read/write one character at a time

Line at a time I/O
Read/write one line at a time

Direct I/O
Read/write one or more objects at a time



Character at a time input

#include <stdio.h>
int getc(FILE *fp);

MACRO: Get one character from the specified 
stream

int fgetc(FILE *fp);
FUNCTION: Get one character from the specified 
stream

int getchar(void);
Get one character from stdin



More character at a time input

Decoding errors
ferror(FILE *fp);

Returns true if the error was a real error
feof(FILE *fp);

Returns true if the end of file was reached

int ungetc(int c, FILE *fp);
Forces one character back onto the specified 
stream
Usually used to check a character (i.e. “did we 
reach a space?” without consuming it)



Character at a time output

#include <stdio.h>
int putc(int c, FILE *fp);

MACRO: Put one character (note that it is an int) 
onto the designated output stream

int fputc(int c, FILE *fp);
FUNCTION: Put one character (note that it is an 
int) onto the designated output stream

int putchar(int c);
Put one character (int) onto stdout



Line at a time input

#include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);

Read one line from the specified input stream
Read until newline or until buf is full (n-1 
characters);

char *gets(char *buf);
Read one line from stdin
Deprecated due to buffer overflow potential



Line at a time output

#include <stdio.h>
int fputs(const char *str, FILE *fp);

Put one line (null-terminated) onto the 
specified output stream

int puts(const char *str);
Put one line (null-terminated) onto stdout



Standard I/O Efficiency
Standard I/O can be more efficient because of buffering
Can be less efficient because of extra code

Function User CPU 
(seconds)

System CPU 
(seconds)

Clock Time 
(seconds)

Bytes of 
Program Text

Best file I/O 0.0 0.3 0.3

fgets, fputs 2.2 0.3 2.6 184

getc, putc 4.3 0.3 4.8 384

fgetc, fputc 4.6 0.3 5.0 152

Worst file I/O 23.8 397.9 423.4



Binary I/O

Section 5.9



Positioning a stream

Section 5.10



Formatted output

Section 5.11



Formatted input

Section 5.11



Implementation Details

Section 5.12



Temporary Files

Section 5.13



Alternatives to Standard I/O

Section 5.14
We didn’t discuss this in class


	Chapter 5: Standard I/O Library
	Introduction
	Streams and FILE Objects
	Standard Input, Output, and Error
	Buffering
	Fully Buffered
	Line Buffered
	Unbuffered
	Buffering requirements
	Changing buffering
	Flushing the buffers
	Opening a stream
	Details
	Closing a stream
	Reading and Writing Streams
	Character at a time input
	More character at a time input
	Character at a time output
	Line at a time input
	Line at a time output
	Standard I/O Efficiency
	Binary I/O
	Positioning a stream
	Formatted output
	Formatted input
	Implementation Details
	Temporary Files
	Alternatives to Standard I/O

