
Chapter 4: Files and
Directories

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167

Files and Directories

Chapter 3 covered basic file I/O
Chapter 4 covers more details

stat
File attributes
Special files
Directories

Stat, fstat, lstat
Sys/types.h, sys/stat.h
Int stat (const char *pathname, struct stat *buf)
Int fstat(int fildes, struct stat *buf)
Int lstat(const char *pathname, struct stat *buf)
All three return 0 or -1 (on error)
Provide information about the named file

Fstat works on open files
Lstat is like stat, but provides info about symbolic link on
symbolic links

Stat details
struct stat {

mode_t st_mode; /* file type and mode (perms) */
ino_t st ino; /* i-node number */
dev_t st_dev; /* device number (filesystem) */
dev_t st_rdev; /* device number for special files */
nlink_t st_nlink; /* number of links */
uid_t st_uid; /* user id of owner */
gid_t st_gid; /* group id of owner */
off_t st_size; /* size in bytes, for regular files */
time_t st_atime; /* time of last access */
time_t st_mtime;/* time of last modification */
time_t st_ctime; /* time of last file status change */
long st_blksize;/* best I/O block size */
long st_blocks;/* number of 512-byte blocks allocated */

};

File Types I
Regular files

Most common
Contain data (text, binary, etc.)
Kernel considers contents to be a stream of bytes (or blocks
of bytes)

Directory files
Contains the names of other files
Also contains pointers to other files
Read permission = read contents of directory
Write permission = create new files in the directory
Execute permission = access files in the directory

File Types II

Character special file
A type of file used for certain types of
devices
Character-oriented devices: keyboard,
mouse, …

Block special file
A type of file used for certain types of
devices
Block-oriented devices: disk, tape, …

Device access via the file
system

Devices need to be accessible to processes
Devices need to be nameable by processes
Devices are generally read and written
File systems provide all of this

We use the file system to interface to the devices
The read and write calls executed by the OS are
specific to the individual devices

File Types III

FIFO
A type of file used for interprocess
communication (IPC) between files
Also called a named pipe

Socket
A type of file used for network
communication between processes
Can also be used for processes on the
same machine

File Types IV

Symbolic Link
A type of file that points to another file

A hard link is a name for a file
Different hard links to the same file are really two
different names for the file

A soft link always contains the name of a file
It refers to the file indirectly through the “real”
name of the file

Determining file type
File type is encoded in the st_mode member
of the stat data structure
Macros

S_ISREG() /* regular file */
S_ISDIR() /* directory file */
S_ISCHR() /* character special file */
S_ISBLK() /* block special file */
S_ISFIFO() /* pipe or FIFO */
S_ISLNK() /* symbolic link */
S_ISSOCK() /* socket */

#include <sys/types.h>
#include <sys/stat.h>

Int main(int argc, char *argv[]) {
int i;
struct stat buf;
char *ptr;

for(i = 1; i < argc; i++) {
printf(“%s: “, argv[i]);
if(lstat(argv[i], &buf) < 0) {

err_ret(“lstat error”);
continue;

}

if(S_ISREG(buf.st_mode)) ptr = “regular”;
else if(S_ISDIR(buf.st_mode)) ptr = “directory”;
else if(S_ISCHR(buf.st_mode)) ptr = “character special”;
else if(S_ISBLK(buf.st_mode)) ptr = “block special”;
else if(S_ISFIFO(buf.st_mode)) ptr = “FIFO”;

#ifdef S_ISLNK
else if(S_ISLNK(buf.st_mode)) ptr = “symbolic link”;

#endif
#ifdef S_ISSOCK

else if(S_ISSOCK(buf.st_mode)) ptr = “socket”;
#endif

else ptr = “unknown”;
printf(“%s\n”, ptr);

}
exit(0);

}

File type frequencies

File Type Count Percentage
Regular file 30,369 91.7%
Directory 1,901 5.7%
Symbolic link 416 1.3%
Character special 373 1.1
Block special 61 0.2
Socket 5 0.0
FIFO 1 0.0

Set-User-ID and Set-Group-ID

Every process has six or more IDs
Who we really are

Real user ID
Real group ID
Taken from our entry in the password file
Don’t generally change

Who we are currently pretending to be
Effective user ID
Effective group ID
Supplementary group IDs
Used for file access permission checks
Normally the same as the real user and group ID
Can be changed via set-uid and set-gid bits in
programs
Passwd is a set-uid program

Saved by exec() functions
Saved set-user-ID
Saved set-group-ID
Copies of effective user ID and effective
group ID when a program is executed
Only meaningful when running a set-uid or
set-gid program

File Access Permissions
st_mode also include access permissions for the file
All file types have permissions
Nine permission bits

S_IRUSR /* user-read */
S_IWUSR /* user-write */
S_IXUSR /* user-execute */
S_IRGRP /* group-read */
S_IWGRP /* group-write */
S_IXGRP /* group-execute */
S_IROTH /* other-read */
S_IWOTH /* other-write */
S_IXOTH /* other-execute */

Rules
To open a file, must have execute permission on the directory

Directory read = read names of files
Directory execute = access files

Read permission for a file determines if we can read a file
Write permission for a file determines if we can write the file

Also needed for truncation
To create a new file, must have write and execute permission
for the directory
To delete a file, must have write and execute permission for the
directory

Do not need read or write permission for the file itself
To execute a file, must have execute permission for the file and
execute permission for the directory

File Access Permission Checks
If effective user ID is zero, access is allowed
If the effective user ID = owner ID

If permissions allow access, access is allowed
Else, access is denied

If the effective group ID (or one of the
supplementary group IDs) = group ID of the file

If permissions allow access, access is allowed
Else, access is denied

If the appropriate other access is allowed, access is
allowed
Else, access is denied

Ownership of new files and
directories

The user ID of a new file is set to the
effective user ID of the process that
creates it
The group ID of the new file will be
either

The effective group ID of the process, or
The group ID of the parent directory

Access function

Unistd.h
Int access(const char *pathname, int
mode);
Checks to see if access is allowed
Returns 0 or -1 (on error)
Modes: R_OK, W_OK, X_OK, F_OK
(existence)

Umask function

Sys/types.h, sys/stat.h
Mode_t umask (mode_t cmask);
Sets the file mode creation mask for the
process
Returns the previous value
All subsequent file creates are filtered
through cmask
Any bits that are on in cmask are turned off
in the file’s mode

Chmod and fchmod

Sys/types.h, sys/stat.h
Int chmod(const char *pathname,
mode_t mode);
Int fchmod(int fildes, mode_t mode);
Changes permission bits of a file
Must be owner or superuser

Sticky bit

For files: used to keep the file in
memory for later execution
For directories: delete or rename of files
in the directory can only be done by
owner of file or directory (or superuser)

Chown, fchown, and lchown

Sys/types.h, unistd.h
Int chown(const char *pathname, uid_t
owner, gid_t group);
Int fchown(int fildes, uid_t owner, gid_t
group);
Int lchown(const char *pathname, uid_t
owner, gid_t group);
Changes owner of a file (lchown: symlink)

File size

St_size in stat structure
Only meaningful for regular files, directories, or
sym links
Files: size in bytes
Directories: size in bytes
Sym links: size of filename linked to

St_blksize and st_blocks
Files with holes, ls, du, wc –c, cat core >
core.copy (gets all of the zeroes)

File truncation

Sys/types.h, unistd.h
Open with O_TRUNC
Int truncate(const char *pathname,
off_t length);
Int ftruncate(int fildes, off_t length);
Truncates to length

File systems

See Section 4.14 (p.92) for pictures
Partitions
Data blocks
Inodes
Directories

Link

#include <unistd.h>
int link(const char *pathname, const
char *newpath);
Creates a new directory entry for the
file <pathname>
Only superuser can link to directories
increments link count

unlink
#include <unistd.h>
int unlink(const char *pathname);
Removes a link to a file
Decrements the link count
If link count = 0, removes the file
The file stays around as long as any process
has it open!

Useful if a program wants to guarantee that it’s
temporary files go away after it terminates

Unlink removes symbolic links

remove

#include <stdio.h>
int remove(const char *pathname);
Identical to unlink
Removes directories

Rename

#include<stdio.h>
int rename(const char *pathname,
const char *newname);
Renames files and directories
In general, newname is deleted

If directory, must be empty
Permissions must allow deletion of
pathname and creation of newname

Symbolic Links

Indirect link to a file
Contains the name of the file it links to
Different from hard links, which are
additional names for the same file
Symbolic links (also called soft links) are
evaluated at the time they are
referenced
Can create loops!

symlink/readlink

#include <unistd.h>
int symlink(const char *actualpath,
const char *sympath);
Creates a symbolic link
int readlink(const char *pathname, char
*buf, int bufsize);
Reads the contents of a symbolic link
(not the file it links to)

File times

st_atime: last access time of the file
st_mtime: last modication time of the file
st_ctime: last change time of the i-node
status
atime can be used to detect unused files
mtime and ctime can be used to archive only
those files that have changed

utime
sys/types.h, utime.h
int utime(const char *pathname, const struct
utimbuf *times);
Can be used to change atime and mtime
struct utimbuf {

time_t actime;
time_t modtime;

}
Null pointer = use current time
Used by touch, tar, and cpio

How file operations affect
times
Function Referenced file Parent Directory Note
chmod, fchmod c

chown, fchown c
creat a, m, c m, c O_CREAT new file

creat m, c O_TRUNC existing file
exec a
lchown c

link c m, c
mkdir a, m, c m, c

mkfifo a, m, c m, c
open a, m, c m, c O_CREAT new file
open m, c O_TRUNC existing file

pipe a, m, c
read a

remove c m, c remove file = unlink
remove m, c remove directory = rmdir

rename c m, c for both arguments
rmdir m, c
truncate, ftruncate m, c

unlink c m, c
utime a, m, c

write m, c

mkdir and rmdir

sys/types.h, sys/stat.h
int mkdir(const char *pathname,
mode_t mode);
Creates an empty directory
int rmdir(const char *pathname);
Directory must be empty for rmdir to
succeed

Reading directories
Anyone can read directories, only kernel can write
them
sys/types.h, dirent.h
DIR *opendir(const char *pathname);
struct dirent *readdir(DIR *dp);
void rewinddir(DIR *dp);
int closedir(DIR *dp);
struct dirent {

ino_t d_ino;
char d_name[NAME_MAX + 1];

}

chdir, fchdir, and getcwd

unistd.h
int chdir(const char *pathname);
int fchdir(int fildes);
These change the current working
directory
char *getcwd(char *buf, size_t size);
Returns current working directory

Special device files

Filesystems identified by major and
minor device numbers
st_dev and st_rdev fields of stat info
Macros: major and minor

sync and fsync

unistd.h
void sync(void);
int fsync(int fildes);
sync flushes file system

Normally happens every 30 seconds to five
minutes (depending on the file system)

fsync flushes one file

	Chapter 4: Files and Directories
	Files and Directories
	Stat, fstat, lstat
	Stat details
	File Types I
	File Types II
	Device access via the file system
	File Types III
	File Types IV
	Determining file type
	File type frequencies
	Set-User-ID and Set-Group-ID
	
	
	File Access Permissions
	Rules
	File Access Permission Checks
	Ownership of new files and directories
	Access function
	Umask function
	Chmod and fchmod
	Sticky bit
	Chown, fchown, and lchown
	File size
	File truncation
	File systems
	Link
	unlink
	remove
	Rename
	Symbolic Links
	symlink/readlink
	File times
	utime
	How file operations affect times
	mkdir and rmdir
	Reading directories
	chdir, fchdir, and getcwd
	Special device files
	sync and fsync

