!'_ Chapter 3: File 1/0

CMPS 105: Systems Programming
Prof. Scott Brandt
T Th 2-3:45
Soc Sci 2, Rm. 167



i First

= Questions?

= Programming Assignment 1
= Programming Assignment 2
= Class In general?



i What is a file?

= Data storage
= Byte stream
= Named

= Non-volatile
= Shared

= Protected



i Accessing Files

= System manages disk
= Abstraction and manages sharing

= Protection
= Can only access via system calls
= Permissions

= Abstraction

= creat(), open(), close(), read(), write(),
stat()



i Creat and open

= Creat creates a new file
= Open opens or creates a file

= Both return a file descriptor
= Index into kernel table
= Entry contains relevant info

= May fail if
= No file
= NO permission



i open()

= Sys/types.h, sys/stat.h, fcntl.h

= Int open (const char *pathname, int oflag, ...,
/* mode_t mode */);

= Pathname may be absolute or relative

= Oflag = O RDONLY, O WRONLY, O RDRW,
O APPEND, O CREAT, O EXCL, O TRUNC,
O NOCTTY, O NONBLOCK, O SYNC

s Returns error status



i creat()

= Sys/types.h, sys/stat.h, fcntl.h

= Int creat(const char *pathname,
mode_t mode);

s Pathname

= Mode specifies permissions (section
4.5)

= Returns error status




i close(int fildes)

= Unistd.h

= Int close(int filedes);

= Closes an open file

= Takes a file descriptor as a parameter

= All open files are closed automatically
when a process terminates

= Returns error status



i Iseek()

= Sys/types.h, unistd.h

= Off tIseek(int fildes, off t offset, Iint
whence)

= Whence: SEEK_SET, SEEK_CUR,
SEEK END

= Returns current position




i Read()

s Unistd.h

= Ssize t read(int filedes, void *buff,
size t n_bytes);

= Returns number of bytes read or 0 (end
of file) or -1 (error)



i Write()

s Unistd.h

= Ssize t write(int filedes, const void
*pbuff, size t nbytes)

= Returns number of bytes written or
error (file size or disk full)




i 1/0 Efficiency (section 3.9)

s Different buffer sizes

= Bigger buffer is better (page 57)
= Discuss why?

= Discuss other efficiency concerns
= What is the problem with big buffers
» Sparse files, small files, big files
« What other issues exist?



i File Sharing

s Process table

= Table of open file descriptors
« File descriptor flags
= A pointer to the file table entry

= File table of all open files

= The file status flags (read, write, append, sync,
nonblocking, ...);

= The current file offset
= A pointer to the v-node table entry



i File Sharing (cont.)

= V-node structure
= Type of file
= Pointers to functions that operate on it
= I-node Info
= File size



Discuss what happens when
i various operations occur

= Open
= Close
= Read
x Write
= Lseek

= |ISsues: position, size, modification time,
creation time, contents, ...



i Dup and dup?

= Unistd.h
= Copy a file descriptor

= Int dup(int fildes);
= Uses lowest numbered available file descriptor

= Int dup2(int fildes, int fildes2);
« If fildes2 is open, it is closed first

= Can be used to reassign stdin and stdout
= Atomic



i fentl

= Sys/types.h, unistd.h, fcntl.h

= Change the properties of an open file

= Int fentl(int fildes, Int cmd, ... /*Int
arg*/);

= Cmds: F_DUPFD, F_GETFD, F_SETFD,

F GETFL, F_SETFL, F GETOWN,
F SETOWN



i loctl()

= Everything else
= Int ioctl



	Chapter 3: File I/O
	First
	What is a file?
	Accessing Files
	Creat and open
	open()
	creat()
	close(int fildes)
	lseek()
	Read()
	Write()
	I/O Efficiency (section 3.9)
	File Sharing
	File Sharing (cont.)
	Discuss what happens when various operations occur
	Dup and dup2
	fcntl
	Ioctl()

