
Chapter 10: Signals

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167

Introduction

Signals are software interrupts
Signals

Allow processes to deal with asynchronous events
Disk activity completion, process termination, …

Allow processes to synchronize or otherwise
coordinate their activities

Each process can set up signal handlers to
specify what action to take when a signal
arrives

Signal Concepts
Every signal has a name

They all begin with SIG
SIGABRT, SIGALRM, …
Defined in signal.h

Lots of conditions can generate a signal
Terminal generated (CTRL-C)
Hardware exceptions (e.g. divide by 0)
kill() function (allows one process to kill another)
kill command (kill a process from the command line)
Software conditions (e.g., alarm or pipe conditions)

More Signal Concepts

Signals are completely asynchronous
From the perspective of the receiving process
They arrive at apparently random times
Regardless of what the process is currently doing

The process can do three things
Ignore the signal

Except SIGKILL and SIGSTOP
Catch the signal with a signal handler
Let the default action take place

Usually terminate

The Signals

SIGABRT
Generated by calling the abort function
The process terminates abnormally
Default: terminate w/core

SIGALRM
Generated when a timer (set by the process) goes
off
Also generated when the interval timer goes off
Default: terminate

The Signals II

SIGBUS
Implementation-defined hardware fault
Default: terminate w/core

SIGCHLD
Child process has terminated or stopped
default: ignore
typical: call wait()

The Signals III

SIGCONT
Sent to a stopped process when it is
continued
Default: continue the process/ignore,
possibly redraw (e.g. vi)

SIGEMT
Implementation-defined hardware fault
Default: terminate w/core

The Signals IV
SIGFPE

Signals an arithmetic exception
Examples: divide by zero, floating-point overflow, etc.
Default: terminate w/core

SIGHUP
Sent to the controlling process associated with a controlling
terminal when a disconnect occurs
Also generated if session leader terminates
Also used to tell daemon processes to reread their
configuration files
Default: terminate

The Signals V

SIGILL
Indicates that a process has executed an illegal
hardware instruction
Default: terminate w/core

SIGINFO
Generated by the terminal driver when the status
key (CTRL-T) is typed
Sent to all processes in the foreground group
Causes process status to be displayed
Default: ignore

The Signals VI

SIGINT
Generated by the terminal driver when the
interrupt key (DELETE or CTRL-C) is typed
Sent to all processes in the foreground process
group
Often used to terminate a rogue process
Default: terminate

SIGIO
Indicates an asynchronous I/O event
Default: terminate or ignore (system specific)

The Signals VII
SIGIOT

Implementation-defined hardware fault
Default: terminate w/core

SIGKILL
Terminates the process
Can’t be caught or ignored

SIGPIPE
Generated when a process writes to a PIPE or
socket when the other end has terminated
Default: terminate

The Signals VIII
SIGPOLL

Generated when a specific event occurs on a
pollable device
Default: terminate

SIGPROF
Generated when the profiling interval timer goes
off
Default: terminate

SIGPWR
System dependent UPS signal
Default: ignore

The Signals IX

SIGQUIT
Generated by the terminal driver when the quit
key (CTRL-\) is typed
Sent to all processes in the foreground group
Default: terminate w/core

SIGSEGV
Generated by the kernel on an invalid memory
reference
Default: terminate w/core

The Signals X

SIGSTOP
Job-control signal to stop a process
Cannot be ignored or caught
Default: stop process

SIGSYS
Signals an invalid system call

trap() instruction with bad parameters
Default: terminate w/core

The Signals XI

SIGTERM
Generated by kill() by default
Defaut: terminate

SIGTRAP
Implementation-defined hardware fault
Default: terminate w/core

The Signals XII
SIGTSTP

Generated by the terminal driver when the suspend key
(CTRL-Z) is typed
Default: stop process

SIGTTIN
Generated by the terminal when a background process tries
to read from the terminal
Default: stop process

SIGTTOU
Generated by the terminal when a process in the
background tries to write to the terminal
Default: stop process (optional)

The Signals XIII

SIGURG
An urgent condition has occurred
Optionally generated when out-of-band data is
received on a network connection
Default: terminate

SIGUSR1 and SIGUSR2
User-defined signals for use by application
processes
Default: terminate

The Signals XIV

SIGVTALRM
Generated when a virtual interval timer
expires
Default: terminate

SIGWINCH
Generated when terminal window size
changes
Default: ignore

The Signals XV

SIGXCPU
Generated when a process exceeds its soft
CPU limit
Default: terminate w/core

SIGXFSZ
Generated when a process exceeds its soft
file size limit
Default: terminate w/core

The signal() function

#include <signal.h>
void (*signal(int signo, void
(*func)(int))))(int);

Function returning a pointer to a function that
takes an int as a parameter and returns nothing

Sets up a signal handler to be executed when
the specified signal occurs
Returns pointer to old signal handler
Cannot be used for all signals

Program Startup

All signals are set to the defaults, except
Any signal ignored by the parent is ignored by the
child
After fork(), all signal dispositions are identical
After exec() any signals being caught by parent
are set to the default for the child

The parent’s handler wouldn’t make any sense in the
child

Example: Shell handling of interrupt, kill, etc.

Signals during System Calls

Signals are assumed to be important
In many Unixes, the signal will interrupt a
system call to execute the handler (or default
action)
In some Unixes, the system call will restart
afterwards

In others, not
May depend on how the signal was set up,
and which system call is interrupted

Reentrant Functions and
Signals

A reentrant function is one that can be called without
harm a second time, while the first call is still active
Recursive functions are reentrant

They call themselves before they have finished running
Rule of thumb: Writes to globals => non-reentrant
Issue: non-reentrant functions called from signal
handlers may collide with previous calls from main
body of code
Solution: Write simple signal handlers, and only call
reentrant functions
This same issue comes up with threads

Reliable Signal Terminology
and Semantics

Signal is generated when the event causing the
signal occurs

Hardware exception, software condition, terminal-generated,
or a call to kill()
Usually indicated by a flag in the process table

Signal is delivered when the action for a signal is
taken
Between generation and delivery, a signal is pending
A process can block a signal, delaying its delivery
until it is unblocked
Signal mask defines what signals are blocked

kill() and raise()
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int signo);

sends a signal to another process or group of processes
Four conditions for the pid argument

pid > 0, signal sent to process with PID=pid
pid == 0, signal sent to all processes in same group
pid < 0, signal sent to all process whose process group ID =
|pid|
pid == -1, undefined
Permissions have to match (basically = user IDs match)

int raise(int signo);
sends a signal to the calling process

alarm() and pause() functions
#include <unistd.h>
unsigned int alarm(unsigned int seconds);

Allows us to set a timer that will expire in the specified
number of seconds, at which time we will receive a
SIGALRM signal
Returns 0 or seconds remaining until a previously specified
alarm
Usually we catch the signal with a specified handler function

int pause(void);
Suspends the process until a signal arrives
Returns after handler runs

Problematic Example
#include <signal.h>
#include <unistd.h>
static void sig_alrm(int signo) {

printf(“Signal handler is running”);
}
unsigned int sleep1(unsigned int nsecs) {

if(signal(SIGALRM, sig_alrm) == SIG_ERR)
return(nsecs);

alarm(nsecs);
pause();
printf(“sleep1 running after pause”);
return (alarm(0));

}
// Better example uses semaphores, as discussed in class

Signal Sets

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set);
int sigismember(const sigset_t *set, int
signo);
sigset_t is a data type that can refer to
multiple signals at once

sigprocmask()
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t
*oset);

Changes the signal mask for the process
The signal mask determines which signals are
blocked
Set specifies the signals (if non-null)
Current signal mask returned in oset (if non-null)
How determines what is done with set

SIG_BLOCK – specified signals are blocked
SIG_UNBLOCK – specified signals are unblocked
SIG_SETMASK – only specified signals are blocked

sigpending()

#include <signal.h>
int sigpending(sigset_t *set);
Returns the set of signals that are
currently pending

Must have been blocked to be pending

sigaction()
#include <signal.h>
int sigaction(int signo, const struct sigaction *act,
struct sigaction *oact);
Supercedes signal();

Allows handler to temporarily block new signals
Adds other options

struct sigaction {
void (*sahandler)();
sigset_t sa_mask;
int sa_flags;

}

sa_flags
sa_flags determine certain aspects of signal handling

SA_NOCLDSTOP – don’t deliver signal on child job-control
stop
SA_RESTART – restart interrupted system calls
SA_ONSTACK – use a different stack for the signal handler
SA_NOCLDWAIT – don’t let child processes become zombies
SA_NODEFER – don’t block this signal while executing
handler
SA_RESETHAND – revert to default action for this signal
after the handler executes
SA_SIGINFO – provides additional information to a signal
handler

sigsuspend()

#include <signal.h>
int sigsuspend(const sigset_t
*sigmask);
Atomically sets up a signal mask and
suspends the process
Gets rid of possible race condition
between enabling a signal and pausing
to await its arrival

abort()

#include <stdlib.h>
void abort(void);
Shouldn’t be ignored
Can be caught, but can’t be returned
from
Used to perform cleanup before exit

system()

System forks/execs a program
Should ignore SIGINT, SIGQUIT, and
SIGCHLD

Why?
Because SIGINT and SIGQUIT go to all
foreground processes
SIGCHLD doesn’t have a handler

sleep()
#include <unistd.h>
unsigned int sleep(unsigned int seconds);
Causes the calling process to be suspended until
either

The specified number of seconds has elapsed; or
Any signal is caught by the process and the signal handler
returns

Actual time that the process starts running may be
any time after seconds has elapsed

Can be delayed due to other system activity
sleep() can be implemented with alarm(), but this
can cause unwanted interactions

Job-Control Signals
SIGCHLD – child process has stopped or
terminated
SIGCONT – continue process, if stopped
SIGSTOP – Stop signal (can’t be caught or
ignored)
SIGTSTP – Interactive stop signal
SIGTTIN – Read from controlling terminal by
member of background process group
SIGTTOU – Write to controlling terminal by
member of background process group

Extra Features

In some systems:
Signal names

extern char *sys_siglist[];

void psignal(int signo, const char
*msg);

prints out msg: description of signal

	Chapter 10: Signals
	Introduction
	Signal Concepts
	More Signal Concepts
	The Signals
	The Signals II
	The Signals III
	The Signals IV
	The Signals V
	The Signals VI
	The Signals VII
	The Signals VIII
	The Signals IX
	The Signals X
	The Signals XI
	The Signals XII
	The Signals XIII
	The Signals XIV
	The Signals XV
	The signal() function
	Program Startup
	Signals during System Calls
	Reentrant Functions and Signals
	Reliable Signal Terminology and Semantics
	kill() and raise()
	alarm() and pause() functions
	Problematic Example
	Signal Sets
	sigprocmask()
	sigpending()
	sigaction()
	sa_flags
	sigsuspend()
	abort()
	system()
	sleep()
	Job-Control Signals
	Extra Features

