
Chapter 1: Introduction

CMPS 105: Systems Programming
Prof. Scott Brandt

T Th 2-3:45
Soc Sci 2, Rm. 167



Class Outline
Chapter 1: Introduction
Chapter 2: Unix Standards and Implementations
Chapter 3: File I/O
Chapter 4: Files and Directories
Chapter 5: Standard I/O Library
Chapter 6: System Data Files and Information
Chapter 7: The Environment of a Unix Process
Chapter 8: Process Control
Chapter 10: Signals
Chapter 14: Interprocess Communication
Efficient Programming



Introduction
Operating systems provide services for programs

Execute a program, open a file, read a file, allocate memory, 
get time of day, etc.

Most programming languages provide very (too?) 
high-level abstractions for these services

It is almost impossible to write efficient programs at that 
level

This class will focus on programming in the raw –
right on top of the OS
Goals: Efficient, powerful programs that leverage the 
power of the OS



Why Unix?

Unix is widely used and freely available
Linux, FreeBSD, System V, BSD4.4, MacOS, etc.

Once you understand one system in detail, it 
is easy to learn others

At some level, Windows (the most widely used OS 
in the world) isn’t all that different from Unix



Logging In to the Computer

Enter Username and Password
Username identifies you to the 
computer

Why does it care who you are?
Password proves you are who you say 
you are

Why does it need proof?
Is this adequate proof?



The Shell

A shell is a program that:
Accepts inputs from the user
Runs/manages programs for the user
Often supports limited programming

Shells: sh, csh, ksh, bash, tcsh, zsh, …

We will write a shell later in the quarter



Files and Directories
Files provide non-volatile data storage

What you write to a file stays there until you explicitly delete
it

Files have names
That’s how you refer to them, find them, etc.

Files are contained in directories (which also have 
names)
Directories contain files and other directories

Directories form a hierarchy
There is a root directory called “/”

Special files: “.” and “..”



File and Directories (cont.)

Pathnames
Absolute pathname “/a/b/c”
Relative pathname “a/b/c” relative to the current 
directory

Every process has a working directory
The current directory

Home directory
The directory you start out in when you log in



Input and Output

File descriptors
Small integers the kernel uses to identify open 
files in a process
Actually an index into a table maintained by the 
kernel

Standard Input, Output, and Error
Default file descriptors for scanf, printf, etc.
Can be redirected

Unbuffered I/O
Default for open, read, write, lseek, and close



Programs and Processes

Program
An executable file

Process
A running program

Process ID
An identifier for a running program

Process control
Fork, exec, wait



ANSI C Features

Function prototypes
<unistd.h>
Probably in /usr/include/unistd.h

Generic pointers (not important)
Primitive System Data Types

End in _t (as in pid_t)
Defined in <sys/types.h>



Error Handling

Unix system functions return negative 
number to indicate an error (usually)
errno contains addition information
Defined in <errno.h>



User Identification

User ID
Unique identifier for each user that can use 
the computer
Why do we need this?

Group ID
Unique identifier for the group the user is 
in
Useful for sharing information



Signals

Signals allow processes to communicate (but 
just barely)
When a process receives a signal, it can

Ignore it
Let the default action occur
Handle it with a prespecified function (a signal 
handler)

You must own a process to send it a signal



Unix Time Values

Calendar time
Recorded as the number of seconds since January 
1, 1970
Stored as time_t
May cause a second Y2K frenzy

Process time
The amount of time used by a process
Clock time, user CPU time, system CPU time



System Calls and Library 
Functions

System calls
Access points to call OS functions
Not direct function calls
Limited number of well-defined functions
Why?

Library functions
A set of useful functions
May or may not invoke system calls



Library Functions and System 
Calls (cont.)

System Calls

Library Functions

Application Code


